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I. DETAILED DERIVATION OF THE BOSE-EINSTEIN CONDENSATE

A. BEC thermodynamics

Let us consider an ideal Bose gas (with particle number N) confined in a three-dimensional harmonic trap, of which
the frequencies along the x1, x2, and x3 axes are ω1, ω2, ω3, respectively. The single-particle energies are then given
by (h̄ ≡ 1)

En1n2n3
= ω1n1 + ω2n2 + ω3n3 + ε0, (1)

where ni = 0, 1, 2, . . . . (i = 1, 2, 3), and ε0 = 1
2 (ω1 + ω2 + ω3) is the ground state energy [1]. Within the context

of grand canonical ensemble, the total particle number of the system can be written in terms of temperate T and
chemical potential µ (kB ≡ 1):

N =
∑

n1n2n3

1

exp{[E′
n1n2n3

+ (ε0 − µ)]/T} − 1
, (2)

where E
′

n1n2n3
= En1n2n3 − ε0.

Using Ω = (ω1ω2ω3)
1/3 to denote the geometrically average harmonic frequency, the density of states [2] can be

parameterized as

ρ(E) =
1

2

E2

Ω3
+ γ

E

Ω2
, (3)

where γ is the parameter associated with the frequency of the individual oscillators. For an isotropic harmonic system,
i.e., ω1 = ω2 = ω3 = Ω, γ =3/2; in the anisotropic case, the value of γ can be determined numerically [4]. Using
integration N = N0 +

∫
ρ(E)/[e(E+ε0−µ)/T − 1]dE, we have

N = N0 +

(
T

Ω

)3

g3(z) + γ

(
T

Ω

)2

g2(z), (4)

where N0 = z/(1− z) with fugacity z = exp [(µ− ε0)/T ] is the number of particles on the ground state. Here, gn(z)
with n = 2, 3 represents the Bose-Einstein function, is given by

gn(z) =
1

Γ(n)

∫ ∞

0

xn−1

z−1ex − 1
dx, (5)

where Γ(n) is the gamma function for integer n. The Bose-Einstein function can also be expressed in series as
gn(z) =

∑∞
l=1 z

l/ln. For given particle number N , the fugacity z can be numerically determined according to Eq. (4)
when T , γ, Ω are given. Since the number of ground state particles is given by N0 = 1/(z−1 − 1), there is a result of
z = N0/(N0 + 1), hence 0 ≤ z < 1, so that the functions gn(z) are bounded by gn(1) = ζ(n), with ζ(n) denoting the
Riemannian zeta function.

For the system in the quantum condensed phase–Bose-Einstein condensation, the fugacity z ≈ 1, and the particle
number N0 for the ground state is

N0 = N −
(
T

Ω

)3

ζ(3)− γ

(
T

Ω

)2

ζ(2). (6)
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where we have introduced the Riemannian zeta function ζ(n) = gn(1). The critical temperature for the finite Bose
system can be calculated according to Eq. (6) to obtain

TN
c ≈ Ω

(
N

ζ(3)

)1/3 [
1− γζ(2)

3ζ(3)2/3
1

N1/3

]
, (7)

which reduces to the thermodynamic-limit one T0 = Ω(N/ζ(3))
1/3

when N → ∞ as it should. Inserting the definition
of T0 into Eq. (6), the ground-state population below Tc can be written as

N0

N
= 1−

(
T

T0

)3

− γζ(2)

ζ(3)2/3
1

N1/3

(
T

T0

)2

. (8)

The logarithm of the grand partition function can be obtained as [5]

ln Ξ =

(
T

Ω

)3

g4(z) + γ

(
T

Ω

)2

g3(z)− ln(1− z). (9)

Using the identity U = T 2 (∂ ln Ξ/∂T )z,Ω, we obtain the internal energy U [i.e., main-text Eq. (2)] which reads

U = 3T

(
T

Ω

)3

g4(z) + 2γT

(
T

Ω

)2

g3(z), (10)

With the grand thermodynamic potential G(Ω, T, µ) = −T ln Ξ, the harmonic pressure for the confined system can
be derived by introducing the harmonic volume as V = Ω−3,

P = −
(
∂G
∂V

)
T,µ

= T 4g4(z) +
2

3
γΩT 3g3(z), (11)

which is main-text Eq. (3). For the system is in the condensed phase with z → 1, the pressure (11) turns out to be

P = T 4ζ(4) +
2

3
γΩT 3ζ(3). (12)

The pressure P turns out to be P = T 4ζ(4) [3] in the thermodynamic limit, which indicates that the temperature
remains constant during an isobaric process. By contrast, for the finite system the temperature is varied the isobaric
process as the pressure depends not only T but also Ω.
Combining Eqs. (7) and (12), the critical temperature at constant pressure for the finite Bose system is obtained,

TP
c =

 P

ζ(4) + 2
3γ

ζ(3)4/3

N1/3

(
1− γζ(2)

3ζ(3)2/3
1

N1/3

)−1


1/4

. (13)

B. The isobaric heat capacity

Combination of Eqs. (10) and (11) gives the relation: U = 3PΩ−3, and we know that the harmonic volume
V = Ω−3, which yields U = 3PV. The enthalpy is then obtained as H = U + PV = 4PV, or

H =
4P
Ω3

. (14)

where P was given by Eq. (11) simplifying to Eq. (12) in the condensed phase. For constant pressure, inserting Eq.
(12) into the relation ∂P/∂T = 0 leads to

∂Ω

∂T

∣∣∣
T<TP

c

= −3

(
Ω

T
+

2ζ(4)

γζ(3)

)
, (15)

where the ratio Ω/T can be derived from Eqs. (12) and (13) to obtain

Ω

T

∣∣∣
T<TP

c

=
3

2γζ(3)

[
Φ

t4
− ζ(4)

]
. (16)
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FIG. 1: Isobaric heat capacity CP of the non-interacting bosonic system as a function of reduced temperature t. (a) Analytical
and numerical solutions of the isobaric heat capacity for N = 200 particles in the isotropic harmonic oscillator potential, CA

P
and CN

P , are denoted by the solid black line and the small square, respectively. (b) Numerical solutions of the isobaric heat
capacity for isotropic harmonic potentials with different numbers of particles. N = 20, 200, and 2000 are represented by a blue
solid line, a green dash line, and a red dotted dash line, respectively.

Here, we have defined Φ = ζ(4) + 2
3γ

ζ(3)4/3

N1/3

(
1− γζ(2)

3ζ(3)2/3
1

N1/3

)−1

and t = T/TP
c . With consideration Eq. (14), (15),

and (16), the specific heat at constant pressure CP =
(
∂H
∂T

)
N,P in the condensed phase can be given by

CP

N

∣∣∣
T<TP

c

=
32Φγ3ζ(3)3t8

[
3Φ + t4ζ(4)

]
9N [Φ− t4ζ(4)]

4 . (17)

By using the same approach as in the case of condensed phase, for the non-condensed phase with T > TP
c , we have

∂Ω

∂T

∣∣∣
T>TP

c

=

(
Ω
T

)3
γ2Σ1 +

(
Ω
T

)2
γΨ1 +

(
Ω
T

)
Υ1(

Ω
T

)2
γ2Σ2 +

(
Ω
T

)
γΨ2 +Υ2

, (18)

and

Ω

T

∣∣∣
T>TP

c

=
3

2γg3(z)

[
Φ

t4
− g4(z)

]
. (19)

Here, Σ1 = 4g2(z)
2 − 6g1(z)g3(z), Ψ1 = 6g2(z)g3(z) − 12g1(z)g4(4), Υ1 = 9g3(z)

2 − 12g2(z)g4(z), Σ2 = 4g2(z)
2 +

2g1(z)g3(z), Ψ2 = 14g2(z)g3(z), Υ2 = 9g3(z)
2. From Eqs. (14), (18), and (19), we can obtain the specific heat by

simple algebra to arrive at

CP

N

∣∣∣
T>TP

c

=
−24Φg3(z)

2t4g3(z)2 + 3g2(z)Λ

4Υ1t
8g3(z)

2 + 6Ψ1t
4g3(z)Λ + 9Σ1Λ

2

4Υ2t8g3(z)2 + 6Ψ2t4g3(z)Λ + 9Σ2Λ2
, (20)

with Λ ≡ Φ− t4g4(z). In the thermodynamic limit Eq. (20) becomes

CN→∞
P
N

∣∣∣
T>TP

c

= 4

[
4g4(z)

2g2(z)

g3(z)3
− 3g4(z)

g3(z)

]
. (21)

In the high temperature limit where the fugacity z is particularly small, gn(z) =
∑∞

l=1 z
l/ln can be simply approx-

imated by gn(z) ≈ z, leading to CN→∞
P> = 4N as it should [5], which can be clearly observed in the inset of Fig.

1(b).
We should keep in mind that, the analytical expressions of the specific heat [cf. Eqs. (17) and (20)] are not exact

owing to the two approximations, z = 1 for T < TP
c , and N0 = 0 for T > TP

c . Therefore, a more accurate numerical
calculation for the specific heat at constant pressure is required, in which z is calculated exactly from Eq. (2) for
given N , T and ωi with i = 1, 2, 3. However, when determining the heat capacity CP analytically expressed as Eqs.
(17) and (20), we use Eq. (4) to determine z for given N and Ω/T . For comparison, we plot the analytical and
numerical solutions corresponding to CP</N and CP>/N in Fig. 1(a). We observe that our analytical solution is
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in nice agreement with the exact numerical calculation, supporting in favor of our analytical approach. Fig. 1 (b)
shows the specific heat as a function of reduced temperature t. It can be seen that this specific heat is smooth at the
critical point for N , while it becomes sharper with increasing N . The larger system with larger particle number N ,
the smaller the width of the transition zone near the critical point, as also shown in Fig. 1(b).

C. The equation of state at finite-size

We now explore the equation of state for the finite-size Bose system. For the condensed case, using Eqs (6) and
(12), we have

PV = (N −N0)T
ζ(4) + (2γΩ/3T ) ζ(3)

ζ(3) + (γΩ/T ) ζ(2)

= NT
ζ(4) + (2γΩ/3T ) ζ(3)

ζ(3) + (γΩ/T ) ζ(2)

[(
T

Ω

)3
ζ(3)

N
+

(
T

Ω

)2
γζ(2)

N

]
.

(22)

By introducing the correction factor

F (z = 1)
∣∣∣
T<TP

c

=
ζ(4) + (2γΩ/3T ) ζ(3)

ζ(3) + (γΩ/T ) ζ(2)

[(
T

Ω

)3
ζ(3)

N
+

(
T

Ω

)2
γζ(2)

N

]
, (23)

which, together with Eq. (16), can be re-expressed as

F (z)
∣∣∣
T<TP

c

=
1

9NΦ2
t

Φt + ζ(4)

ζ(3) + 3ζ(2)/2ζ(3)Φt

[
8γ3ζ(3)4

3Φt
+ 4γ3ζ(2)ζ(3)2

]
, (24)

where Φ has been defined below Eq. (16) and use of Φt ≡ Φ/t4 − ζ(4) has been made. When the system temperature
is larger than the critical value TP

c , the particle number N0 on the ground state is vanishing, and the state function
for the system can be derived via use of Eqs (4) and (12), yielding

PV = NT
g4(z) + (2γΩ/3T )g3(z)

g3(z) + (γΩ/T )g2(z)
. (25)

When we define F (z)
∣∣∣
T>TP

c

= g4(z)+(2γΩ/3T )g3(z)
g3(z)+(γΩ/T )g2(z)

and use Eq, (19), we get

F (z)
∣∣∣
T>TP

c

=
Φ/t4

g3(z) + 3g2(z)/2g3(z) [Φ/t4 − g4(z)]
. (26)

With these, the equation of state for the finite-size Bose system can be given by main-text Eq. (4), namely

PV = NTF (z), (27)

where

F (z) =


Φ/t4

g3(z)+3g2(z)/2g3(z)[Φ/t4−g4(z)]
, T ≥ TP

c

1
9NΦ2

t

Φt+ζ(4)
ζ(3)+3ζ(2)/2ζ(3)Φt

[
8γ3ζ(3)4

3Φt
+ 4γ3ζ(2)ζ(3)2

]
. T < TP

c

(28)

When T > TP
c , we reproduce F (z)N→∞ = g4(z)/g3(z) in the thermodynamic limit. Additionally, the classical limit

where F (z) ≈ 1 leads to the state function PV = NT [5] for the classical gas as expected.

II. THE ISENTROPIC CONDITION

The thermodynamic entropy S can determined by using the grand thermodynamic potential G = −T ln Ξ to obtain

S = −
(
∂G
∂T

)
µ,Ω

=

(
T

Ω

)3

[4g4(z)− g3(z) ln z] + γ

(
T

Ω

)2

[3g3(z)− g2(z) ln z]. (29)
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During an isentropic, adiabatic process, we have

dS =

(
∂S

∂T

)
Ω

dT +

(
∂S

∂Ω

)
T

dΩ = 0, (30)

or

dΩ

dT
= −

(
∂S
∂T

)
Ω(

∂S
∂Ω

)
T

. (31)

Employing the identity d
dz gn(z) =

1
z gn−1(z), Eq. (29) gives rise to(

∂S

∂T

)
Ω

=
3T 2

Ω3
[4g4(z)− ln zg3(z)] +

2γT

Ω2
[3g3(z)− ln zg2(z)]

+
∂z

∂T

T 2

Ω2

[
T

Ω

3g3(z)− ln zg2(z)

z
+ γ

2g2(z)− ln zg1(z)

z

]
, (32)

and (
∂S

∂Ω

)
T

= −3T 3

Ω4
[4g4(z)− ln zg3(z)]−

2γT 2

Ω3
[3g3(z)− ln zg2(z)]

+
∂z

∂Ω

T 2

Ω2

[
T

Ω

3g3(z)− ln zg2(z)

z
+ γ

2g2(z)− ln zg1(z)

z

]
. (33)

We assume that the temperature-frequency relation under the isotropic condition is the same as that of the harmonic
systems [6], i.e., T/Ω =Const. Under this condition, we find from Eqs. (33) and (32) that the relation

T
∂z

∂T
= −Ω

∂z

∂Ω
. (34)

By applying this to Eq. (4), we get

∂z

∂T
= −3z

T

g3(z) + (2γΩ/3T )g2(z)

g2(z) + (γΩ/T )g1(z)
, (35)

and

∂z

∂Ω
=

3z

Ω

g3(z) + (2γΩ/3T )g2(z)

g2(z) + (γΩ/T )g1(z)
. (36)

By comparing Eqs. (35) and (36), we confirm that Eq. (34) holds for arbitrary z throughout the isentropic process.
Since for an isentropic process S = S(Ω/T, z) = const with Ω/T = const, z is kept constant. That is, for the

machine cycle sketched in main-text Fig. 1, there exists a relation of z1 = z2 and z3 = z4. The correction factor F (z)
in Eq. (27) is therefore kept constant during the adiabatic process, yielding

Vl

V2
=

(
Ph

Pl

)3/4

=

(
T2

Tl

)3

,
Vh

V4
=

(
Pl

Ph

)3/4

=

(
T4

Th

)3

. (37)

Using Eq. (37) and main-text Eq. (7), we can obtain

ε =
Ql

W
=

4Pl (Vl − V4)

4Ph (V2 − Vh)− 4Pl (Vl − V4)
=

1

(Ph/Pl)
1/4 − 1

. (38)
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