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In this supplemental material, we provide the details
of the Hartree-Fock mean field of multi-orbital Hubbard
model HU . Following six channels are decoupled
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Then, HU is decoupled as
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To understand general mean-field orders, for N general
orbits, all the general orbital orders are represent asN∗N
Hermitian matrices.

< Oαβ >=< ηC†αCβ + η∗C†βCα > (3)

where η is coefficient.
N ∗ N Hermitian matrices can be decomposed using

SU(N) generators and identity matrix. SU(N) Lie alge-
bra contains N2− 1 generators, or named orbital isospin

operators. We always choose three types of matrices as
extension Pauli matrices in SU(2). In defining represen-

tation, symmetric non-diagonal σx is extended to T
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and its matrix as
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where α/β are labels for generators and a, b are matrices
indices. All of them are ranging 1 to N.
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where λi are well-known Gell-Mann matrices for SU(3).

For diagonal orders, identity T
(3)
1 is total density. And

other T
(3)
α are ferro-orbital orders and crystal field for

α and β orbits. Typically, crystal field is diagonal and
ferro-orbital for different crystal field class. For exam-
ple, t2g are more occupied than eg orbitals in octahedral
environment.

For symmetric T
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αβ , orders are represent as
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T
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αβ are off-diagonal density matrix for correlated or-

bitals defined in LDA+U, which are also named on-site
interorbial single-electron hopping.
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Using real orbits, orbital angular momentum Li are al-

ways complex and anti-symmetry as in T
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αβ . Angular

momentums Li are well defined in SO(3) symmetric sys-
tems. For general lattices, Li are not defined. Thus, we

extend 3 Li in 3D to generalized N(N−1)
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liαβ are coefficients of Li.
In general, local Fermionic Hilbert space is spanned

by orbital and spin tensor space. Spin order is defined as

Pauli matrices σi in SU(2). For charge order including
ferro-orbital orders, with number N-1 (1 for total charge)
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The relations between order defined here and L̂′,L̂′′,
R̂′,R̂′′.

Re(L̂′αβ) = Ôαβ ∝ U ′ − 3J (24)

Im(L̂′αβ) = L̂αβ ∝ U ′ − J (25)

Re(R̂′αβ) = ÔS
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Re and Im are real and imaginary parts.
The total number of orders for 2N × 2N matrix are

N − 1 + 3N +N(N − 1) + 3N(N − 1) = 4N2 − 1 (32)

RG part

To to RG, we first need expand around the QBCP
with effective continuous model. To keep QBCP, tπ <
0. When tπ = 0, there are two exact flat bands. And
when tπ > 0, there are no QBCP anymore without any
instability. The low energy effective model is described



3

FIG. 1: Four types of one-loop Feynman diagram included in
our RG calculations. The red lines are loops integrated.

by ψpx/y,σ = 1√
2
(ψσ,A,px/y

+ ψσ,B,px/y
). Under this basis

transformation, interaction vertices remain same form as
in multi-orbital hubbard model.

HQBC(k) =
tσ + tπ

2
k2σ0 +

tσ − tπ
4

(k2σz +
√

3(k2
x − k2

y)σx)

= d0σ0 + dxσx + dzσz (33)

The non-interacting Green’s function (Gσ0 (ω,k))−1 =
(iω − d0)σ0 − dxσx − dzσz. Then, we integrate out fast
modes between cutoff Λ and Λ

s .We have four interaction
vertices and perform one-loop RG including four types of
Feynman diagrams. The essentail fermion loop integrals
are listed below:
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2π and s = edl. To more

precisely,
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In Figs.2-5, we list all one-loop Feynman diagrams con-
tributing to interaction renormalization.
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FIG. 2: Feynman diagrams contributing to U renormaliza-
tion.
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FIG. 3: Feynman diagrams contributing to U ′ renormaliza-
tion.
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FIG. 4: Feynman diagrams contributing to J renormalization.
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FIG. 5: Feynman diagrams contributing to Jp renormaliza-
tion.


