Supplemental Material: Predicted Pressure-Induced

High-Energy-Density Iron Pentazolate Salts

Chuli Sun (孙矗丽)², Wei Guo (郭伟)^{1,2,3*}, and Yugui Yao (姚裕贵)^{1,2,3}

¹Frontiers Science Center for High Energy Material (MOE), Beijing Institute of Technology, Beijing 100081, China

²Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, People's Republic of China ³State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China

Space group	Lattice parameters	Atomic coordinates
		(fractional)
Fdd2	a=10.748, b=8.910, c=8.463	Fe (0.500, 0.500, 0.271)
	α=90.0, β=90.0, γ=90.0	N (0.372, 0.923, 0.246)
		(0.257, 0.082, 0.364)
		(0.507, 0.346, 0.443)
		(0.683, 0.001, 0.769)
		(0.122, 0.220, 0.099)
<i>P</i> -1(No.1)	a=5.229, b=5.373, c=6.687	Fe (0.000, 0.000, 0.000)
	α=91.322, β=110.802, γ=119.586	N (0.181, 0.924, 0.294)
		(0.302, 0.370, 0.243)
		(0.598, 0.981, 0.798)
		(0.880, 0.859, 0.681)
		(0.524, 0.706, 0.829)
<i>P</i> -1(No.2)	a=3.959, b=3.961, c=7.201	Fe (0.000, 0.500, 0.000)
	α=96.630, β=103.731, γ=99.842	N (0.644, 0.775, 0.898)
		(0.435, 0.076, 0.681)
		(0.705, 0.355, 0.179)
		(0.284, 0.934, 0.177)
		(0.823, 0.183, 0.320)

Table S1: The lattice parameters and atomic positions of Fdd2-FeN₁₀, P-1(No.1)-FeN₁₀ and P-1(No.2)-FeN₁₀ under ambient pressure.

Figure S1: Relative enthalpies of Fdd2-FeN₁₀, P-1(No.1)-FeN₁₀ and P-1(No.2)-FeN₁₀ under different van der Waals correction methods (PBE-D3 and optB88-vdW). The enthalpy of P-1(No.2)-FeN₁₀ is used as the reference state.

Figure S2: The crystal structure and bond lengths (Fe-N: black, N-N: blue) of P-1(No.2)-FeN₁₀ at 0 GPa.

Figure S3: (a) Phonon dispersion curves P-1(No.2)-FeN₁₀ at 0 GPa. (b) Total free energy fluctuations of P-1(No.2)-FeN₁₀ at 900 K under ambient pressure. The illustration shows structural snapshots of P-1(No.2)-FeN₁₀ after 10 ps in AIMD simulations.

Figure S4: (a) (c) (e) Phonon dispersion curves of Fdd2-FeN₁₀, P-1(No.1)-FeN₁₀ and P-1(No.2)-FeN₁₀ at 40 GPa. (b) (d) (f) Total free energy fluctuations of Fdd2-FeN₁₀, P-1(No.1)-FeN₁₀ and P-1(No.2)-FeN₁₀ in AIMD simulations. 2500 K, 800 K and 2200 K are the highest temperature at which Fdd2-FeN₁₀, P-1(No.1)-FeN₁₀ and P-1(No.2)-FeN₁₀ can remain stable at 40 GPa respectively, and the illustrations show their structural snapshots after 10 ps.

Figure S5: Temperatures and snapshots of Fdd2-FeN₁₀, P-1(No.1)-FeN₁₀ and P-1(No.2)-FeN₁₀ losing stability in AIMD simulations under ambient pressure.

Figure S6: The partial charges of *Fdd2*-FeN₁₀ and *P*-1(No.1)-FeN₁₀ at ambient pressure.

Figure S7: Partial density of states of *Fdd2*-FeN₁₀ and *P*-1(No.1)-FeN₁₀ at 0 GPa.

Figure S8: Partial density of states of *P*-1(No.1)-FeN₁₀ at 0-100 GPa.

Figure S9: Partial density of states of *Fdd*2-FeN₁₀ above 10 GPa.