
Supplementary material: Topological 

Wannier cycles for the bulk and edges 

Ze-Lin Kong(孔泽霖) 1 , Zhi-Kang Lin(林志康) 1* , and Jian-Hua Jiang(蒋建华) 1,2* 

1School of Physical Science and Technology, and Collaborative Innovation Center of 

Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China 

2Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province, and 

Key Lab of Modern Optical Technologies of Ministry of Education, Soochow 

University, Suzhou 215006, China 

* Email : linzhikangfeynman@163.com; jianhuajiang@suda.edu.cn 

 

Text A: Illustration of creating the single-plaquette artificial gauge flux 

We insert the single-plaquette artificial gauge flux from three consecutive 

procedures. These procedures are illustrated in Fig. S1. The first procedure is dimension 

extension. For instance, the two-dimensional (2D) breathing kagome model is stacked 

along the z-direction periodically to extend the system from a 2D model to a three-

dimensional (3D) model. Note that here the coupling in the z-direction is not essential. 

We, in fact, consider the limit that the coupling along the z-direction vanishes. We then 

create a step screw dislocation (SSD) at the center of these dimension-extended systems. 

We specifically consider systems that are finite in the original dimensions but periodic 

in the z-direction. Here, the step screw dislocation consists of three flat sectors (“steps”). 

But the couplings between the adjacent sectors are tilted in such a way that these flat 

steps form a screw dislocation with a clear chirality and an emergent screw symmetry 
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reduction by the Fourier transformation along the z-direction, which splits the system 

into several 2D systems labeled by 𝑘𝑧. 



 

 

Figure S1 : (Color online) Schematic illustration of the three consecutive procedures that are used 

to create the artificial gauge flux: dimension extension, creating a step screw dislocation and 

dimensional reduction. 

 

Text B: Topological indexes, elementary band representations and charge 

distributions 

Following Ref. [1], as the breathing kagome and SSH models separately respect 

𝐶3  and 𝐶2  point group symmetries, the topology of their bulk band gaps can be 

detected, respectively, by the following topological indexes 
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 denotes the number of bulk bands below the 

band gap with 𝐶𝑛  symmetry eigenvalue 𝑒𝑖𝑝(2𝜋/𝑛)  at 𝛱  point, 𝑝 = 0, 1, … , 𝑛 − 1 

and 𝛱 stands for 𝐾 in the breathing kagome lattice and 𝑋, 𝑌 and 𝑀 for the SSH 

lattice. 

Based on the little group representations labeled in Fig. 1 in the main text and the 

character tables of 𝐶3  and 𝐶2  groups (see Table. S1), we can directly acquire the 

rotation eigenvalues of these representations. Then, the topological indexes of bulk 

band gaps can be calculated. For the topological phase, the topological indexes are 

𝜒(3) = (1, 0) and 𝜒(2) = (−1, 0, −1), respectively, for the breathing kagome and SSH 

lattices, while 𝜒(3) = (0, 0) and 𝜒(2) = (0, 0, 0), for the trivial phase. 

The Wannier orbitals located at the Wyckoff positions in real space and the little 

group representations (or symmetry eigenvalues) of eigenstates at high-symmetry 

points in the Brillouin zone are related by the theory of elementary band representations 

(EBRs). The EBRs of 𝑃3  and 𝑃2  space groups are given in Table. S1, where 𝑔𝑛
  



denotes the rotation eigenvalues of Wannier orbitals, and the subscripts 𝑎, 𝑏, and 𝑐 

represent the Wyckoff positions. The EBRs support the analysis of Wannier orbitals and 

centers in the main text.  

The distributions of electron charges of the finite systems, as given in Figs. 4(c) 

and 4(d) of the main text, are obtained in a simple way by evaluating the proportion of 

bulk Wannier centers falling in each unit-cell. One can also use the first principle 

method to calculate the electron charges in each unit-cell, 

𝑄 = ∫ 𝑑𝜖 ∫ 𝑑𝒓𝜌(𝜖, 𝒓)
 

𝑢.𝑐.

𝜖𝑔𝑎𝑝

0
,        (2) 

where 𝜖𝑔𝑎𝑝 is the upper limit of the energy integration, which should be placed above 

the lower-energy bulk states. The integration over the site coordinates 𝒓 is performed 

over one unit-cell as denoted by u.c.. 𝜌(𝜖, 𝒓) is the local density of states (LDOS) of 

electrons depending on the energy ϵ and the coordinate 𝒓, which can be written as 

 𝜌(𝜖, 𝒓) = ∑
Γ

𝜋|Γ2+(𝜖−𝜖𝑖)2|
|𝑤𝑖(𝒓)|2

𝑖 ,         (3) 

where 𝑤𝑖(𝒓)  is the wave function of the 𝑖 -th eigenstate with the normalization 

∫ 𝑑𝒓|𝑤𝑖(𝒓)|2 

𝑢.𝑐.
= 1 . Γ  is a sufficiently small parameter to model the Lorentz 

broadening. We remark that the corner and edge states calculated from the first-

principle method deviate from the values labeled in Figs. 4(c) and 4(d) of the main text. 

The latter depicts the charge distributions in the limit with extremely localized Wannier 

orbitals. 

 

Table S1: (a) and (b). Character tables of 𝐶3 and 𝐶2 point group symmetries, respectively. (c) and 



(d) Elementary band representations of the 𝑃3 and 𝑃2 space group symmetries. 𝑔𝑛
  denotes the 

rotation eigenvalues of Wannier orbitals, the subscripts 𝑎, 𝑏, and 𝑐 label the Wyckoff positions. 

 

Text C: Realization of Wannier cycles in phononic systems via sonic crystals 

We simulate the phononic realization of the studied breathing kagome and SSH 

lattices in the main text. by using the commercial software COMSOL Multiphysics. In 

terms of the tight-binding (TB) models, the phononic models are realized by connected 

acoustic resonators which are cylindrical cavities with the height ℎ = 0.5𝑎 and the 

diameter 𝐷 = 0.3𝑎, where 𝑎 is the lattice constant. The transmission of sound along 

each tube connecting them denotes the nearest-neighbor hoppings, whose strength is 

controlled by the diameter of the tube. Specifically, to obtain the nontrivial band 

topology, we use tubes of the diameter 𝑑1 = 0.1𝑎  (𝑑2 = 0.2𝑎 ) to realize the intra-

unit-cell (inter-unit-cell) hoppings. The unit-cells of the phononic models are illustrated 

in Figs. S2(a) and S2(b). Here, for simplicity, we set 𝑡3 = 0 in the SSH lattice. The 

phononic topological bulk bands are shown in Figs. S2(c) and S2(d), in units of the 

frequency 𝑣/𝑎  (𝑣  is the sound velocity in air). The little group representations at 

high-symmetry points are also exhibited, which are deduced from their corresponding 

phase distribution of wavefunctions, as given in the insets. All these representations are 

the same as those of TB models shown in Fig. 1 in the main text. 

We then calculate the spectra as functions of the inserted single-plaquette artificial 

gauge flux for the breathing kagome and SSH models with a step screw dislocation, as 

presented in Fig. S3. The results confirm the emergence of the topological Wannier 

cycles in realistic materials which are also confirmed in a recent experimental study 

(see Ref. [2]). In fact, these numerical results are even more encouraging: Due to the 

absence of the chiral symmetry in these phononic systems, the edge and corner states 

disappear in the phononic realization. However, even in this situation, the topological 

Wannier cycle still emerges and can thus serve as a reliable experimental signature of 

higher-order band topology and the filling anomaly. In fact, the breaking of the chiral 

symmetry is common in higher-order topological materials. Such an effect imposes 



challenges for experimental detection of the higher-order band topology. The 

topological Wannier cycle then serves as an unprecedented way to solve such a problem. 

 

 

Figure S2: (Color online) Phononic realization of the breathing kagome and SSH lattices. (a) Unit-

cell of the phononic breathing kagome model in topological phase. The right panel shows that a 

site is realized by a cylindrical acoustic resonator with the diameter 𝐷 = 0.3𝑎 and the height 

ℎ = 0.5𝑎, while the intra- and inter-unit-cell couplings are realized by the tubes of diameters 

𝑑1 = 0.1𝑎 and 𝑑2 = 0.2𝑎, respectively. (b) Unit-cell of the phononic SSH model in topological 

phase. (c) and (d) Corresponding phononic bulk band structures for (a) and (b). Inset shows the little 

group representations at high-symmetry points associated with phase patterns of their wavefunctions. 

 



 

Figure S3: (Color online) Phononic realization of the artificial gauge flux insertion in a single 

plaquette and topological Wannier cycles. (a) and (b): The designed sonic crystal structures for 

(a) the breathing kagome model and (b) the SSH model when the procedures in Fig. S1 are 

applied. The red tubes denote the slanted couplings between the adjacent sectors. (c) and (d) The 

corresponding phononic spectra as functions of Φ = 𝑘𝑧𝐻 for the structures in (a) and (b). The 

grey region denotes the bulk states. The orange curves represent the spectral flows across the band 

gaps. (e) and (f) The phononic wavefunctions of in-gap states, marked by blue squares in (c) and 

(d), are localized around the local gauge flux at the central plaquette. The phase patterns around 

central acoustic resonators validate the Wannier cycles.  

 

Text D: Topological Wannier cycles of edge states in the quadrupole model 

We in the main text extend the topological bulk Wannier cycles to the edge Wannier 

cycles by creating a step glide dislocation in the 2D SSH model. Nevertheless, there are 

always accompanied spectral flows of bulk states in the band gap. Here, we achieve the 

topological Wannier cycles of only edge states, by replacing the 2D SSH model with 

the 2D quadrupole model. As illustrated in Fig. S4(a), the difference compared to the 

2D SSH model is that the quadrupole model has negative couplings -𝑡1 and -𝑡2, as 

denoted by the cyan lines. The negative couplings leave all the energy bands twofold-



degenerate in the Brillouin zone and make the corner states observable in the spectra at 

the zero energy. Here, the key to getting rid of the topological Wannier cycles of bulk 

states is that, due to the twofold degeneracy, the bulk continua always have an even 

number of states. Under the gauge flux, the cyclic transformation between bulk 

eigenstates with rotation eigenvalues 𝑔0
(2)

 and 𝑔1
(2)

 can be fulfilled within each bulk 

continuum. Hence, only the topological Wannier cycles of edge states persist, as 

denoted by the red curves in the spectra in Fig. S4(b). 

 

Figure S4: (Color online) Topological Wannier cycles of edge states. (a) The effective TB 2D 

quadrupole model with a step glide dislocation. The dashed and solid lines denote the intra- and 

inter-unit-cell couplings 𝑡1 and 𝑡2, respectively. The cyan lines denote the negative couplings. The 

purple dots denote the Wannier centers in the edge regions. The orange zone represents the gauge 

flux. (b) The corresponding energy spectra in (a) as functions of the gauge flux 𝑘𝑧. The grey and 

cyan zones denote the bulk and edge states, respectively. The spectral flows of edge states are 

marked with red color. The blue line denotes the corner states. The TB parameters are the same as 

those in Fig. 5(b) in the main text. 

 

Text E: Robustness of Wannier cycles 

In this section, we study the robustness of the Wannier cycles against various 

disorders in TB models. As shown in Fig. S5, we introduce disorders by means of 



double enhancing or half weakening some hopping strength located away from the 

center (blue region), near the center (green region), and at the very center (red region) 

of the two-dimensional kagome and SSH lattices with artificial gauge fields. 

Particularly, all these disorders preserve the rotation symmetry, 𝐶3 or 𝐶2, to protect 

the gapless feature of spectral flows. As shown in Figs. S5(b) and S5(f), the disorders 

away from the center, despite the stronger or weaker hopping strength, have almost no 

effects on the dispersion of spectral flows, which makes sense because these disorders 

barely overlap with the center-localized states manifested by spectral flows. The 

disorders near the center with weak hopping strength [left panel in Figs. S5(c)] 

introduce other localized states in the breathing kagome model, which mix with the 

spectral flows but do not alter the gapless feature. The disorders at the very center with 

weaker hoppings [left panel in Figs. S5(d)] shift the spectral flow with higher energy 

and make them away from the lower bulk states. For the SSH model, The disorders near 

and at the center both “compress” the dispersion which makes the spectral flows 

isolated in energy. The disorders at the very center with stronger hoppings only slightly 

alter the dispersion and do not affect their energy range and gapless feature. 

 

Figure S5: (Color online) Robustness of the Wannier cycles. (a) The effective breathing kagome 

TB model with disorders located away from the center (blue region), near the center (green 



region), and at the very center (red region). (b)-(d) Spectra as functions of Φ = 𝑘𝑧𝐻  for the 

structures in (a) with disorders located away from the center, near the center and at the very 

center. The Left and right panels correspond to weaker and stronger hoppings in disorders, 

respectively. (e)-(h) Similar to (a)-(d) but for the SSH lattice.  
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