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I. TIGHT-BINDING MODEL

The tight-binding model studied in this work is a two-orbital model defined on a honeycomb lattice. For simplicity, we only
include the nearest-neighbor hopping which couples the two sublattices. On the same sublattice, distinct orbitals are orthogonal.
It is easy to show that, under symmetry constrain, ℎ𝛼𝛼 (𝑘) = (3𝑎+𝑏)(1+𝑒𝑖𝑘1 )/4+𝑏𝑒−𝑖𝑘2 , ℎ𝛽𝛽 (𝑘) = (𝑎+3𝑏)(1+𝑒𝑖𝑘1 )/4+𝑎𝑒−𝑖𝑘2 ,
and ℎ𝛼𝛽 =

√
3(𝑎 − 𝑏)(1 − 𝑒𝑖𝑘1 )/4. 𝛼, 𝛽 denote 𝑑𝑥𝑦 and 𝑑𝑥2−𝑦2 , respectively. 𝑎, 𝑏 are model parameters, and 𝑘1, 𝑘2 are

the momenta in the first Brillouin zone (BZ), i.e. the fractions of reciprocal lattice vectors b1 and b2. On the basis of
|𝜙𝐴

𝑑𝑥𝑦
⟩, |𝜙𝐴

𝑑𝑥2−𝑦2
⟩, |𝜙𝐵

𝑑𝑥𝑦
⟩, |𝜙𝐵

𝑑𝑥2−𝑦2
⟩, the Hamiltonian matrix can be cast as

𝐻 ′
0 (𝑘) =

©«
0 0 ℎ𝛼𝛼 (𝑘) ℎ𝛼𝛽 (𝑘)
0 0 ℎ𝛽𝛼 (𝑘) ℎ𝛽𝛽 (𝑘)

ℎ∗𝛼𝛼 (𝑘) ℎ∗𝛼𝛽 (𝑘) 0 0
ℎ∗𝛽𝛼 (𝑘) ℎ∗𝛽𝛽 (𝑘) 0 0
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As atomic orbitals are orthogonal in the same sublattice, the first and the last 2 × 2 Hamiltonian blocks are zero. Only the
hopping between A-B sublattice contributes. Let us further consider the SOC, it contains both local and nonlocal contributions
with the former being the largest term. We neglect the nonlocal SOC, which does not qualitatively affect our model. Atomic
SOC between 𝑑𝑥𝑦 and 𝑑𝑥2−𝑦2 orbitals is a constant. Without it, two eigenvalues of 𝐻0 (𝑘) degenerate at K-point at the Fermi
level. After including the SOC term, the following Hamiltonian is obtained and a topological gap immediately opens leading to
the QAH phase, which is the starting point of our correlated study in this work.

𝐻0 (𝑘) =
©«

0 2𝑖𝜆 ℎ𝛼𝛼 (𝑘) ℎ𝛼𝛽 (𝑘)
−2𝑖𝜆 0 ℎ𝛽𝛼 (𝑘) ℎ𝛽𝛽 (𝑘)

ℎ∗𝛼𝛼 (𝑘) ℎ∗𝛼𝛽 (𝑘) 0 2𝑖𝜆
ℎ∗𝛽𝛼 (𝑘) ℎ∗𝛽𝛽 (𝑘) −2𝑖𝜆 0
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There are three independent parameters 𝑎, 𝑏, and 𝜆. Depending on the value 𝑎/𝜆 and 𝑏/𝜆, there will be three phases with distinct
topological numbers, i.e. 𝑐 = 0,−1, and 𝑐 = 2.

The 𝐶 = −1 phase has been shown to correspond exactly to the low-energy excitation of FeBr3 [1]. It is different from Haldane
model [2] and Kane-Mele model [3] in the following way: First, our QAH model does not contain any artificial complex hopping
term. Instead, a local SOC between the two orbitals triggers the nontrivial topological states of the model. Secondly, our QAH
model is a correlated topological model defined for the 𝑑𝑥𝑦 and 𝑑𝑥2−𝑦2 orbitals, which is a realistic construction for correlated
topological systems. Thus, it is interesting to know the effect of electronic correlation on the ground state of this model.

Many previous studies of correlation effect on topological model aim to trigger topological state from Haldane model or
Kane-Mele model without the complex hopping term, and expect to generate it from the dynamic evolution. In contrast, we
start with a correlated model of intrinsic topology and try to understand its robustness. We characterize the correlated topology
by using different approximated methods, as no exact solution is available. We adopt the static mean-field approximation, the
dynamical mean-field theory (DMFT), the Cellular DMFT (CDMFT) and exact diagonalization (ED) approaches. These methods
are subject to different levels of approximations. By combining them, we expect to reduce numerical bias and obtain a consistent
characterization of the correlated topological state. In the following table SI-1, we compare the four approximated approaches
in terms of dynamical fluctuations, spatial fluctuations, and thermodynamic limit. A numerically exact method would contain
dynamical fluctuation, long-range spatial fluctuations, and is built at thermodynamic limit. By comparing the results from the
four approximated methods, we expect to understand the effect of these three features and get insights of the exact solution.
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TABLE SI-1. Comparison of the four methods reveals their different levels of approximation.
Method Dynamical Fluctuations Spatial Fluctuations Thermodynamic Limit

Static Mean-Field No No Yes
DMFT Yes No Impurity embedding

CDMFT Yes Only short-range Cluster embedding
ED Yes Only short-range No

A. Chern number

In the tight-binding model and the static mean-field calculations, one obtains the wavefunctions which can be employed to
calculate the Chern number from BZ integration. To do this, we follow the recipe of T. Fukui [4] and calculate the Chern
number by discretizing BZ into small patches. The Chern number is given by a sum of the winding number of the 𝑈 (1) gauge
transformation along the boundary of a patch. The 𝑈 (1) link is defined as

𝑈𝜈 (𝑘𝑙) ≡ ⟨𝑛(𝑘𝑙) |𝑛(𝑘𝑙 + �̂�)⟩/N𝜈 (𝑘𝑙) , (3)

where 𝜈 is a vector denoting direction 𝜈. Along the boundary of a patch, one can define a lattice field strength, whose imaginary
part gives rise to the Chern number

�̃�12 (𝑘𝑙) ≡ ln𝑈1 (𝑘𝑙)𝑈2 (𝑘𝑙 + 1̂)𝑈1 (𝑘𝑙 + 2̂)−1𝑈2 (𝑘−1
𝑙 ) = 𝑎 + 2𝜋𝑖𝑛12 (𝑘𝑙) . (4)

Here, 𝑎 is a real number, and the sum of 𝑛12 (𝑘𝑙) for all discrete 𝑘𝑙 is the Chern number.

Chern number =
∑
𝑙

𝑛12 (𝑘𝑙) . (5)

In our tight-binding and static mean-field calculations, we directly calculate the wave functions and determine the Chern number
with 20 × 20 momentum patches in the first BZ, which is sufficient to get a converged solution. In DMFT, CDMFT, and ED
calculations, due to the lack of wave functions and enough momentum resolution, we did not calculate the Chern number.

B. Static mean-field equation

To account for both 𝑉1 and 𝑉2, in the main text, our static mean-field calculations were performed in a six-site unit-cell as
shown in Fig. 1c of the main text. There are three sites from A-sublattice, and three sites from B-sublattice. 𝑑𝑥𝑦 and 𝑑𝑥2−𝑦2

orbitals reside at each site. Thus, there are 12 basis functions, which we denote as

{𝑚}1· · ·12 = {𝐴𝑑𝑥𝑦

1 , 𝐴
𝑑𝑥2−𝑦2

1 , 𝐴
𝑑𝑥𝑦

2 , 𝐴
𝑑𝑥2−𝑦2

2 , 𝐴
𝑑𝑥𝑦

3 , 𝐴
𝑑𝑥2−𝑦2

3 , 𝐵
𝑑𝑥𝑦

1 , 𝐵
𝑑𝑥2−𝑦2

1 , 𝐵
𝑑𝑥𝑦

2 , 𝐵
𝑑𝑥2−𝑦2

2 , 𝐵
𝑑𝑥𝑦

3 , 𝐵
𝑑𝑥2−𝑦2

3 } , (6)

Tight-binding model expressed at this basis function is a 12 × 12 matrix. To transform the interaction part to a quadratic form,
we further decompose the density-density interaction by the standard mean-field decoupling

�̂�𝐴𝑖 �̂�𝐵 𝑗 ≈ ⟨𝑛𝐴𝑖 ⟩�̂�𝐵 𝑗 + �̂�𝐴𝑖 ⟨𝑛𝐵 𝑗 ⟩ − ⟨𝑛𝐴𝑖 ⟩⟨𝑛𝐵 𝑗 ⟩ , (7a)
�̂�𝐴𝑖 �̂�𝐴 𝑗 ≈ ⟨𝑛𝐴𝑖 ⟩�̂�𝐴 𝑗 + �̂�𝐴𝑖 ⟨𝑛𝐴 𝑗 ⟩ − ⟨𝑛𝐴𝑖 ⟩⟨𝑛𝐴 𝑗 ⟩ . (7b)

The mean-field Hamiltonian is simply obtained by appending each diagonal term of the 12 × 12 tight-binding matrix with a
constant dependent on the charge density of the other sites. This term can be generally written as

𝐻𝐴𝛼 = 𝑉1⟨𝑛𝐵⟩ + 3𝑉2 (⟨𝑛𝐴⟩ − ⟨𝑛𝐴𝑖 ⟩) , (8a)
𝐻𝐵𝛼 = 𝑉1⟨𝑛𝐴⟩ + 3𝑉2 (⟨𝑛𝐵⟩ − ⟨𝑛𝐵𝑖 ⟩) . (8b)

⟨𝑛𝐴/𝐵⟩ =
∑3

𝑖=1
∑

𝛼=𝑑𝑥𝑦 ,𝑑𝑥2−𝑦2 𝑛𝐴𝑖/𝐵𝑖 ,𝛼. As each diagonal term differs slightly depending on the charge densities, diagonalizing
the new Hamiltonian matrix yields a new set of dispersions 𝜖 𝑗 (𝑘) and eigenstates |𝜓 𝑗 ,𝑚 (𝑘)⟩, where 𝑗 denotes the 𝑗-th eigenstate,
and 𝑚 ∈ [1, 12] denotes the 𝑚−th basis component. We proceed to calculate the local density of states 𝜌(𝜖) and the new chemical
potential 𝜇 from

𝜌(𝜖) = 1
𝑁

∑
𝑘, 𝑗

𝛿[𝜖 − 𝜖 𝑗 (𝑘)] ,
∫ ∞

−∞
𝑑𝜖

𝜌(𝜖)
exp[𝛽(𝜖 − 𝜇) + 1] = 𝑛𝑡𝑜𝑡 . (9)
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We fix the particle density to be one per site (𝑛𝑡𝑜𝑡 = 6), corresponding to a half-filling condition, and inverse temperature is taken
as 𝛽 = 1000. The calculation of new charge density close the mean-field self-consistent loop as

⟨𝑛𝑚⟩ =
1
𝑁

∑
𝑘

12∑
𝑗=1

|𝜓 𝑗 ,𝑚 (𝑘) |2

exp[𝛽(𝜖 𝑗 (𝑘) − 𝜇) + 1] . (10)

After convergence, we further determine the free energy. Whenever multiple CDW phases are found to be stable in the calculation,
we compare their free energy to determine the ground state.

𝐹 =
1
𝑁

∑
𝑘

12∑
𝑗=1

𝜖𝑘
exp[𝛽(𝜖 𝑗 (𝑘) − 𝜇) + 1] −𝑉1⟨𝑛𝐴⟩⟨𝑛𝐵⟩ − 3𝑉2 (𝑛𝐴1𝑛𝐴2 + 𝑛𝐴1𝑛𝐴3 + 𝑛𝐴2𝑛𝐴3 + 𝑛𝐵1𝑛𝐵2 + 𝑛𝐵1𝑛𝐵3 + 𝑛𝐵2𝑛𝐵3 )

+𝑘𝐵𝑇
∫

𝑑𝜖 𝜌(𝜖) { 𝑓 (𝜖) ln[ 𝑓 (𝜖)] + [1 − 𝑓 (𝜖)] ln[1 − 𝑓 (𝜖)]} (11)

Our self-consistent mean-field calculation starts with a trivial charge density belonging to one of the four states, i.e. 222000,
210210, 220200, and 111111 states. Convergence is achieved if the total difference of the new and old charge density Δ =∑12

𝑚=1 |⟨𝑛𝑛𝑒𝑤𝑚 ⟩ − ⟨𝑛𝑜𝑙𝑑𝑚 ⟩| is smaller than 10−5.
The emergence of the CDW order breaks the symmetry between the two sublattices. Thus, the transition between the QAH

phase and the CDW phase does not necessarily close the gap. In the following, we give an intuitive explanation on this point.
Following the decomposition of Eq. (7), we update the Hamiltonian Eq. (1) with the correlation effect in the mean-field level
and assume there is no orbital order between 𝑑𝑥𝑦 and 𝑑𝑥2−𝑦2 .

𝐻𝐻𝐹 (𝑘) =
©«
3𝑉1𝑛𝐵/2 − 𝜇 2𝑖𝜆 ℎ𝛼𝛼 (𝑘) ℎ𝛼𝛽 (𝑘)

−2𝑖𝜆 3𝑉1𝑛𝐵/2 − 𝜇 ℎ𝛽𝛼 (𝑘) ℎ𝛽𝛽 (𝑘)
ℎ∗𝛼𝛼 (𝑘) ℎ∗𝛼𝛽 (𝑘) 3𝑉1𝑛𝐴/2 − 𝜇 2𝑖𝜆
ℎ∗𝛽𝛼 (𝑘) ℎ∗𝛽𝛽 (𝑘) −2𝑖𝜆 3𝑉1𝑛𝐴/2 − 𝜇

ª®®®¬ . (12)

Before the CDW establishes, 𝑛𝐴 = 𝑛𝐵. The electronic repulsions 𝑉1 only introduce a constant energy term to all bands, which
corresponds to a shift of the chemical potential 𝜇 = 3𝑉1 (𝑛𝐴 + 𝑛𝐵)/2. Consequently, the charge gap remains the same as the one
in the non-interacting limit. When the CDW starts to establish, it creates an energy difference between the A-B sublattice.

𝐻𝐻𝐹 (𝑘) =
©«

𝑚 2𝑖𝜆 ℎ𝛼𝛼 (𝑘) ℎ𝛼𝛽 (𝑘)
−2𝑖𝜆 𝑚 ℎ𝛽𝛼 (𝑘) ℎ𝛽𝛽 (𝑘)

ℎ∗𝛼𝛼 (𝑘) ℎ∗𝛼𝛽 (𝑘) −𝑚 2𝑖𝜆
ℎ∗𝛽𝛼 (𝑘) ℎ∗𝛽𝛽 (𝑘) −2𝑖𝜆 −𝑚

ª®®®¬ . (13)

Unlike the case of the single-band model where the CDW order parameter always increases the gap, in a multiorbital system, it
can either shrink or enlarge the charge gap depending on the amplitude of 𝑚, as one will see after diagonalizing Eq. (13). Because
𝑚 further depends on the charge imbalance of the two sublattices, it is in fact not a free parameter but has to be self-consistently
determined. Consequently, the charge gap in a multiorbital model generally does not monotonically change with the increase
of the CDW order parameter. Only when 𝑚 is large enough, does the corresponding free energy become smaller than that of
the charge uniform phase, the topological phase transition between the QAH and the CDW occurs with a sudden increase of
the CDW order parameter. As shown in Fig.3 of the main text, the first-order phase transition is observed in all calculations.
The transition, thus, does not necessarily accompany a gap closure. In Fig. S1, we show the density of states (DOS) from ED
calculations on a six-site cluster with periodic boundary conditions. The eight major peaks in each plot correspond to the top
and bottom edges of the four bands, thus, the charge gap is easily seen from the peak separation around the Fermi level. In all
three topological phase transitions, the charge gap does close and reopen.

II. DYNAMICAL MEAN FIELD THEORY

DMFT is an embedding approach, where a finite-size system called impurity is embedded in the infinite-large lattice. The
embedding procedure, on one hand, simplifies the calculations by replacing the problem of solving a lattice Hamiltonian to
solving an impurity one. On the other hand, the embedding procedure provides the impurity system a dynamically fluctuating
external field, to which the impurity electrons couple. This dynamically fluctuating field is named a hybridization function,
which characterizes the coupling between the impurity and the rest of the lattice system. Although the construction of DMFT
is conceptually in the thermodynamic limit, the nature of the DMFT approximation respects only the local charge fluctuations.
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FIG. SI-1. The local DOS before and after the topological phase transition between the QAH and CDW states for all three topological distinct
phases. The first row shows the DOS for the QAH phase close to the transition boundary. The second row shows the DOS for the CDW phase
slightly after the phase transition. The transition induces an abrupt increase of the CDW order parameter, which is denoted here as 𝜌. The
Fermi level in each plot has been shifted to zero. The charge gap is simply the energy difference between the first two peaks around the Fermi
level.

DMFT assumes Green’s function of the impurity system to be equal to the local part of the lattice Green’s function, which
establishes a self-consistent procedure.

𝐺𝑖𝑚𝑝
𝑚,𝑛 =

1
𝑁𝑘

∑
𝑘

[
1

(𝑖𝜔𝑛 + 𝜇)I − [𝐻0 (𝑘)] − [Σ(𝑖𝜔𝑛)]

]
𝑚,𝑛

, (14)

where I is an unity matrix of the same size of the impurity dimension. In our DMFT study, we take the primitive cell of
the honeycomb lattice, which contains two inequivalent sites, as the impurity. I is then a 4 × 4 unity matrix. [𝐻0 (𝑘)] is the
tight-binding matrix given in Eq. (1), and [Σ(𝑖𝜔𝑛)] is the impurity self-energy with the same dimension of the impurity problem.
We used ED to solve the impurity problem and obtain [Σ(𝑖𝜔𝑛)].

We note that ED works only with Hamiltonians. While, the DMFT embedding procedure spoils the Hamiltonian form of the
impurity by introducing the hybridization function, which imposes additional complexity to ED, i.e. the hybridization function
needs to be simulated by additional degrees of freedom. For this reason, in ED we work with an Anderson impurity model
(AIM), which has the following Hamiltonian form

𝐻𝐴𝐼𝑀 =
𝑁𝑑∑
𝑚

𝜖𝑚𝑑
†
𝑚𝑑𝑚 +

𝑁𝑏𝑎𝑡ℎ∑
𝑙

𝜖𝑙𝑎
†
𝑙 𝑎𝑙 +

∑
𝑙

(𝑊𝑙𝑚𝑎
†
𝑙 𝑑𝑚 + ℎ.𝑐.) +𝑉1

∑
𝑚1𝑚2

𝑛𝑚1𝑛𝑚2 . (15)

𝑑†𝑚 (𝑑𝑚) is the creation (annihilation) operator of the impurity electron, and 𝑁𝑑 = 4. 𝑉1 is the Coulomb interaction between
neighboring sites. 𝜖𝑚 is the impurity energy level. 𝜖𝑙 and 𝑊𝑙𝑚 are additional parameters introduced to simulate the hybridization
function. They are often called bath degrees of freedom. In our calculation, we take 𝑁𝑏𝑎𝑡ℎ = 8 and a shared-bath topology.

[𝐺𝑖𝑚𝑝,−1 (𝑖𝜔𝑛) + Σ(𝑖𝜔𝑛)] = [𝑖𝜔𝑛 + 𝜇 − 𝐸𝑙𝑜𝑐 −
∑
𝑙

𝑊∗
𝑚1𝑙

𝑊𝑙𝑚2

𝑖𝜔𝑛 − 𝜖𝑙
] , (16)

where 𝐸𝑙𝑜𝑐 is the impurity energy level and corresponds to the local part of Eq. (1). We use 𝜒2-minimization to fit the left side
of the above equation by choosing appropriate 𝑊𝑙𝑚 and 𝜖𝑙 . The quality of the DMFT solution, therefore, depends on the quality
of fitting. In our calculations, we always carefully check the fitting parameters and, most of the time, we use the converged fitting
values of {𝑊, 𝜖} at the neighboring parameters 𝑎/𝜆, 𝑏/𝜆,𝑉1/𝜆,𝑉2/𝜆 as initial values. For the DMFT calculations, we directly
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used the lapack routine to diagonalize the Anderson impurity Hamiltonian. While, for the six-site CDMFT equations, we used
the Lanczos algorithm [5] and also includes the nest nearest-neighbor interaction 𝑉2.

We briefly summarize the advantages and limitations of our DMFT calculation. Understanding the condition of applicability is
essential for interpreting the results and summarizing the general conclusions independent of any specific method. (1). Compared
to the static mean-field theory presented in the previous section, DMFT contains dynamic fluctuations which will influence both
the QAH and the CDW states. (2). The local approximation of DMFT allows only local charge fluctuations to be considered. (3).
ED only works with Hamiltonian form, such that we have to use additional bath degrees of freedom to simulate the hybridization
function. Limited by the memory size, one cannot take as many bath sites as wanted. In our calculations, we take 𝑁𝑏𝑎𝑡ℎ = 8,
which we found sufficient to fit the hybridization function with good accuracy. (4). A better treatment of non-local Coulomb
interaction requires an extended-DMFT calculation, in which interactions become dynamical. Here, we simply truncate the
interaction beyond the impurity size, which results in a simplification. From such approximation, we underestimate the effect of
𝑉1 and 𝑉2. Thus, the results we obtained provide an upper bound of the phase boundary between QAH and CDW.
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