Supplementary Information for "Partially Diffusive

Helium-Silica Compound under High Pressure"

Cong Liu (刘聪),^{1,2} Junjie Wang (王俊杰),¹ Xin Deng (邓忻),³ Xiaomeng Wang (王 晓梦),¹ Chris J. Pickard,^{4,5} Ravit Helled,⁶ Zhongqing Wu (吴忠庆),³ Hui-Tian Wang (王慧田),¹ Dingyu Xing (邢定钰),¹ and Jian Sun (孙建)^{1,*}

¹ National Laboratory of Solid State Microstructures, School of Physics and

Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China

² Departament de F śica, Universitat Polit ècnica de Catalunya, Campus Nord B4-B5, E-08034 Barcelona, Spain

³ Laboratory of Seismology and Physics of Earth's Interior, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China

⁴ Department of Materials Science & Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, UK

⁵ Advanced Institute for Materials Research, Tohoku University 2-1-1 Katahira, Aoba, Sendai, 980-8577, Japan

⁶ Institute for Computational Science, Center for Theoretical Astrophysics & Cosmology, University of Zurich, Switzerland

^{*} Corresponding author. jiansun@nju.edu.cn

Fig. S1. Convexhull of formation enthalpies (ΔH_f) calculated from DFT-D3¹, all electron potentials (Wien2k²), vdw-optB88³ and rev-vdw-DF2⁴, CASTEP⁵, and with zero point energy (ZPE). The results are robust and consistent with different functionals and methods.

Fig. S2. Calculated Phonon spectra of the thermodynamically stable/metastable phases: (a) *Pnma*-I, (b) *Pmn2*₁, (c) *Pnma*-II, and (d) *Pnma*-III. The orange curves correspond to optical branches and the red curves correspond to acoustic branches. No imaginary vibrational frequencies were found in the phonon spectra.

Fig. S3. Gibbs free energy at 2000 GPa based on QHA calculations.

Fig. S4. Calculated Band gaps of He, SiO_2 , and $HeSiO_2$ over the pressure range 500-4000 GPa based on simply pure PBE functional.

Fig. S5. Density of states for all HeSiO₂ canidates at 2000 GPa based on simply pure PBE functional.

Fig. S6. Ternary phase diagram of the He-Si-O system at 400, 600, 800, and 1000 GPa. The stable/unstable phases are marked in solid/open red points.

Fig. S7. Enthalpies of the HeSiO_4 compounds, as well as its possible decompositions in the pressure range between 300 and 1000 GPa. Insert figure show the crystal structure of *1422* phase HeSiO_4 .

Fig S8. Dynamical behavior of Si (blue), O (red), and He atoms (dark green) in the HeSiO₂ compound under high pressures and high temperatures. AIMD simulations were performed at initial pressure of 600 GPa for the *Pnma* HeSiO₂ compound. (a-b) The averaged mean-squared displacements (MSD). (c-d) Atomic trajectories from the simulations representing the plastic phase. The Si, O and He atoms are respectively plotted with blue, red, and dark green.

Pressure	$P2_1/m$	$Pmn2_1$	Pnma-III	Pnma-IIII	Pnma-I	Pnma-II
500 GPa	2.075	2.078	2.072	2.079	2.078	2.075
1000 GPa	2.088	2.085	2.069	2.090	2.083	2.087
2000 GPa	2.095	2.083	2.056	2.089	2.088	2.093
3000 GPa	2.105	2.079	2.064	2.106	2.082	2.083
4000 GPa	2.112	2.090	2.074	2.116	2.092	2.079

Table I. Bader charge on helium atoms in different phases.

- I		I I				
V (Å ³)	<i>Т</i> (К)	P (GPa)	N	k-mesh	${f D_{ m Si} D_{ m O} D_{ m He}} \ ({f 10^{-8} m^2}/s)$	State
659.04	5000	663.84	192	$1 \times 1 \times 1$	0.00 0.00 0.00	Solid
659.04	5000	663.97	192	$2 \times 2 \times 2$	0.00 0.00 0.00	Solid
1318.09	5000	663.93	384	$1 \times 1 \times 1$	0.00 0.00 0.00	Solid
659.04	9000	721.66	192	$1 \times 1 \times 1$	0.00 0.00 0.12	SI
659.04	9000	719.64	192	$2 \times 2 \times 2$	0.00 0.00 0.10	SI
1318.09	9000	721.45	384	$1 \times 1 \times 1$	0.00 0.00 0.08	SI
659.04	9000	820.87	192	$1 \times 1 \times 1$	1.08 1.48 3.37	Fluid
659.04	12000	822.06	192	$2 \times 2 \times 2$	1.07 1.51 4.02	Fluid
1318.09	12000	820.75	384	$1 \times 1 \times 1$	1.06 1.40 3.98	Fluid

Table II. Thermodynamic data from our simulations affect by different box size (number of atoms in supercells: N) and *k*-mesh on motion behaviors of each species of atom in *Pnma*-I phase.

C	Lattice parameters	Atomic coordinates		
Space group	(Å)	(fractional)		
	7.2520	Si	0.6125 0.7500 0.2546	
D	a = 7.3530	0	0.9667 0.2500 0.2499	
Pnma-1	b = 2.2022	0	0.2153 0.2500 0.0276	
	c = 2.8982	He	0.3531 0.7500 0.0657	
Pnma-II	7 4120	Si	0.8618 0.7500 0.5341	
	a = 7.4130	0	0.0339 0.7500 0.2387	
	b = 2.1865 c = 2.8849	0	0.2835 0.7500 0.4700	
		He	0.1023 0.7500 0.7868	
Pnma-III	a = 3.9635 b = 2.1028 c = 5.5564	Si	0.8139 0.7500 0.1580	
		0	0.6865 0.7500 0.4528	
		0	0.9774 0.7500 0.7208	
		He	0.4570 0.2500 0.9751	
	a = 5.4683 b = 2.1832 c = 3.9197	Si	0.3271 0.2500 0.1362	
D		0	0.3930 0.7500 0.8795	
Pnma-IV		0	0.6083 0.2500 0.6175	
		He	0.6496 0.7500 0.3703	
	2 2011	Si	0.0000 0.7249 0.7610	
D	a = 2.2011	0	0.0000 0.0697 0.4804	
$Pmn2_1$	b = 3.6785 c = 2.8973	0	0.5000 0.4334 0.7582	
		He	0.5000 0.7940 0.4424	
	a = 2.8890 b = 2.1869 c = 4.0453	Si	0.3805 0.7500 0.7236	
D2 /		0	0.2124 0.2500 0.4332	
$P2_{l}/m$		0	0.7235 0.2500 0.9325	
		He	0.0984 0.2500 0.7953	

Table III. Structural information for HeSiO₂ compounds at 1000 GPa.

Table V. Structural information for HeSiO₄ compounds at 1000 GPa.

Smalla anorm	Lattice parameters	Atomic coordinates			
Space group	(Å)		(fractional)		
1422	a = 3.2944	Si	0.5000 0.5000 0.5000		
		0	0.6312 0.8688 0.7500		
		He	0.5000 0.5000 0.0000		

Reference

1. Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. *J. Comput. Chem.* **32**, 1456–1465 (2011).

2. Blaha, P., Schwarz, K., Kvasnicka, D. & Luitz, J. WIEN2k: An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz, Technische Universitaet Wien, Vienna, 2001).

3. Klimeš, J., Bowler, D. R. & Michaelides, A. Chemical accuracy for the van der Waals density functional. *J. Phys. Condens. Matter* **22**, 022201 (2009).

4. Hamada, I. van der Waals density functional made accurate. *Phys. Rev. B* **89**, 121103 (2014).

5. Clark, S. J. *et al.* First principles methods using CASTEP. Z. F ür Krist. - Cryst. Mater. **220**, 567–570 (2009).