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In the supplementary material, we provide more detailed information about magnetic material datasets
used in this work, and the equivalence between the self-supervised training of graph neural networks(GNN)
and classification tasks.

1 Datasets

MAGNDATA[1, 2] is a high-quality experimental database with more than 1500 published commensurate
and incommensurate antiferromagnetic materials, which contains rich information on the magnetic structure
and experimentally measured Néel temperatures.

The Néel temperature full dataset constructed from MAGNDATA, excluding the disordered and incom-
mensurate magnetic structures which can’t be handled appropriately by pymatgen[3], contains only 1,007
entries, which is relatively small. While the Néel temperature sub-dataset of size 748 is obtained by keeping
the materials with a unit cell of fewer than 60 atoms in the entire dataset.

The magnetic moment dataset of size 1816 is constructed from the Néel temperature dataset. Transition
metals account for 67% of the total number of atoms in the dataset, and the most frequent elements of
transition metals are Mn, Fe, Co, Ni, Cu, and Cr. In contrast, lanthanides account for 25% of the total
atoms in the dataset, and the most frequent lanthanide elements are Nd and Tb. The average size of
magnetic moments in the dataset is 3.05 µB , while the minimum is 0.04 µB and the maximum is 12.11µB ,
and 90% of the magnetic moments are smaller than 6 µB .

2 The self-supervised training of GNN

In CGCNN[4], the element information and distance between atoms are one-hot encoded in the node vectors
and edge vectors, respectively. More specifically, for properties represented by discrete values, such as the
period number and group number of elements, the vector is encoded according to the category to which
the value belongs. On the other hand, for a property represented by continuous value, for example, the
electronegativity of an element, the value will be discretized into ten bins, and the vector will be constructed
accordingly.

Therefore, the self-supervised learning tasks of reproducing period number and group number of randomly
masked atoms correspond to classification problems of 8 and 18 categories, respectively. We also randomly
mask the edge information, the distance between atoms of the masked nodes, and train the neural network
to predict the distance information, which corresponds to a classification problem of 41 categories.

We group the magnetic moments represented by continuous values into 64 discrete data bins to reduce
the difficulty of the training and extract more information. As a result, the prediction of magnetic moments
can also be regarded as a classification problem of 64 categories. The numbers of training epochs, mask ratio,
and discrete bins are hyperparameters that can be fine-tuned for the best model.
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