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S-1. TIGHT-BINDING METHOD 21 

The band structure of the Lieb lattice can be derived from a tight-binding model. In it, we 22 

consider the overlap among s-states electrons. The Hamiltonian of the system is 23 

, ,

( . .) ( . .)i i i i j i j

i i j i j

H a a t a a H C t' a a H C + + +

   

= − + − +    with t  and t'  as the nearest-24 

neighboring (NN) and the next-nearest-neighboring (NNN) overlap energy, respectively. 25 

We set the onsite energy to be 0  for both corner- and edge-sites, and the lattice constant to 26 

be 2r. Then the matrix form of the Hamiltonian of the system is: 27 
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The energy eigenvalues are obtained by solving the secular equation: 29 
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 31 

For the case of 0t' = , the Hamiltonian can be simplified as: 32 
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The eigenvalues can be obtained as: 34 
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1  is a flat band. 2  and 3  are two dispersive bands. Then we employ the numerical integral 36 

method to obtain local density of states (LDOS) spectra. The corresponding LDOS spectra at the 37 

edge- and corner-sites demonstrate that there are two peaks at 0 2lE t= −  and 0 2hE t= +  at 38 

corner site, and one additional peak appears at 0mE =  due to the flat band. Therefore, the NN 39 

overlap energy can be obtained as: 40 

  or .
2 2

h m m lE E E E
t

− −
=  (5) 41 

When 0t'  , the flat band bends near the Brillouin zone center, while it remains flat from 42 

M  to  . Thus, it can still result a peak in the LDOS of edge-site with a small shift from 0  43 

(Fig. S1(a)). The corresponding LDOS maps are shown in Fig. S1(b). Note that considering the 44 

lifetime effect of surface state electrons, we added a broadening of 0.2t in the LDOS calculation. 45 

 46 

  47 

Fig. S1: (a) Calculated electronic band structure and LDOS of a Lieb lattice with t = 100 meV and 48 

0.5t' t=   via tight-binding method. (b) Corresponding LDOS maps at hE   (upper) and mE  49 

(lower). 50 

 51 

 52 
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Fig. S2: (a) The calculated influence of t   on the estimation of t with the proposed method. (b) 54 

Comparison of the revised t and the experimentally obtained ones. 55 

 56 

To evaluate the influence of t' , we calculate 
2

h mE E−
 as a function of t for different t'  57 

from 0 to 0.6t. As shown in Fig. S2(a), the overlap energy is exactly 
2

h mE E−
 for 0t' = . As for 58 

0t'  , the value of 
2

h mE E−
 has a small deviation from t. It is, however, still within the 59 

experimental error bar, as shown in Fig. S2(b). Thus, we can approximately obtain: 60 

 .
2

h mE E
t

−
  (6) 61 

In addition, the tight-binding calculation is based on the assumption that the wavefunction of 62 

the neighboring atoms, i  and j  are orthogonal. Namely, 0i j i js  = = . In ref. [18], the 63 

authors, however, obtained s = 0.15 for artificially atoms built by quantum well states with a 64 

separation of ~1.28 nm. In our experiment, the minimum separation is about 1.75 nm. It can be 65 

anticipated that s should be smaller than 0.15 in our case due to its decay property with increasing 66 
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separation. Thus, we performed the calculations for s from 0 to 0.15. As shown in the figure below, 67 

it has little influence on the positions of the peaks. Therefore, it has no influence on our main 68 

conclusion. 69 

 70 

 71 

Fig. S3: The influence of s on the positions of characteristic LDOS peaks of a Lieb lattice. 72 

S-2. GREEN’S FUNCTION METHOD 73 

We consider a 4 4  Lieb lattice on the Ag(111) surface. According to the T-matrix 74 

method [1-4], the Green’s function is  75 

 ,
N

0 0 i i j 0 j

i, j=1

G(r,r';E)= G (r,r';E)+ G (r,r ;E)T(r ,r ;E)G (r ,r';E)  (7) 76 
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where 
(1)

0 ( )0 sG (r,r';E)= i H k r r'− −  is the free two-dimensional Green’s function. 
(1)

0 ( )H x  77 

gives the zeroth-order Hankel function of the first kind and s  is the density of state of the surface 78 

state. ( )i jT r ,r ;E  is the T-matrix determined by Dyson’s equation, which contains the 79 

information about the propagation between the impurities i and j: 80 

 
, 0

1

( , ; ) ( , ; ) ( , ; ).
l

N

i j i i j i i l j

l

T r r E V V G r r E T r r E
=

= +   (8) 81 

V is the scattering potential of the adatom to the surface state. 82 

In matrix form, 0
T = V + VG T , thus we obtain 

1( )−
0

T = V I - VG  [5], where 83 
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and 85 
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For the position not on the Fe adatoms ir r , the LDOS is given by: 87 

 ( )
1

; Im( [ ( , ; )]).r E Tr r r E


= − G  (11) 88 

For the LDOS above the corner and edge sites ir r= , we treat them by taking into account 89 

the inversion effect [6]. We first calculate the LDOS of the site of concern by assuming the adatom 90 

is missing at that site, namely the LDOS of the empty site ( ; )r E . Secondly, we consider the 91 

inversion effect caused by the added adatom on this site. Then, the density of state at this adatom 92 

can be obtained by the inversion relationship [7, 8]: 93 
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where Green’s function 
1
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=
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. In it, aE  is the adsorbate energy level of a 95 

single adatom and ( ) ( ) ( )E E i E =  −   is the self-energy where 96 
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 = +  and ( ) ( ; ) ( )s s bE r E E  =  +  . s  and b  are 97 

the hybridization energy of the adsorbate level with the surface and bulk states, respectively. For 98 

the Fe adatom on Ag(111), we adopt the material parameters that were used in Ref. [6], namely, 99 

0.21aE =  eV, 0.37s =  eV, and 0.535b =  eV. 

1 02(
tan ( )

1
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E E
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）

 is the surface 100 

state of the Ag(111) surface state without any adatom. 38 =  meV is the inverse life time of the 101 

surface state [6], and 0 65E = −  meV is the surface state onset energy of Ag(111) [9]. Notably, 102 

the values for all the parameters mentioned above are imported from References [6, 9]. Thus, there 103 

are no tunable parameters in our calculations. 104 

S-3. SPECTRA COMPARISON OF THE CALCULATED AND 105 

EXPERIMENTAL RESULTS 106 

For an isolated Fe adatom on the surface, the STM image and dI/dV spectrum is shown in 107 

Figs. S4(a) and S4(b). The dI/dV on top of the Fe adatom shows a resonance around −130 meV. 108 

Similar features were observed for Co on Au(111) [10], Cu on Cu(111) [11], and Ag and Co on 109 

Ag(111) [8]. These are localized states on top of the transition metal adatoms and are attributed to 110 

the strong coupling of the s state of the adatoms with the bulk and surface states of the (111) 111 

oriented noble metal substrate [12-15]. The calculated LDOS at the Fe adatom is shown in Fig. 112 
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S4(c), which shows a close similarity with the experimentally obtained dI/dV curve (Fig. S4(b)). 113 

The overall bending up of the dI/dV curves as compared to the LDOS is due to the bias dependent 114 

tunneling matrices [16]. For reference, we also show a typical dI/dV curve obtained on a flat 115 

Ag(111) terrace, which exhibits a onset energy at −65 meV. 116 

 117 

 118 

Fig. S4: (a) Morphology of an isolated Fe adatom on a wide Ag(111) terrace. ( 0.05biasV =  V, 119 

1.0I =  nA). (b) The corresponding dI/dV spectrum. (c) The calculated LDOS of an Fe single 120 

adatom on Ag(111) by means of the Green’s function method. (d) A typical experimentally 121 

obtained dI/dV spectrum of Ag(111) surface.  122 

 123 

Figure S5 is the comparison between the experimental dI/dV curves and the numerically 124 

calculated LDOS via Green’s function method. The experimentally raw data of dI/dV and 125 

(dI/dV)/(I/V) obtained with different interatomic distance r is shown in Figs. S5(a) and S5(b). They 126 

exhibit pronounced peaks with the width increases with decreasing r. This can be understood as 127 

the surface state contains a lifetime and the scattering caused by the Fe adatoms increases with 128 

decreasing r. So does the lifetime as well as the peak width. As r increases, the peaks interval 129 

decreases while the peaks positions gradually move toward lower energy. The calculation results 130 

(Fig. S5(c)) show the same trends as the experimental results. To reduce the noise and minimize 131 
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the influence of the imperfect positions of Fe adatoms in the lattice sites, we obtained dI/dV and 132 

I/V spectra at different positions of the same type of lattice sites near the middle area of the 4×4 133 

matrix. For each lattice site, the dI/dV curves are averaged with more than 20 spectra, and we fitted 134 

the average curves with Gaussian function and found the peak positions. The obtained t with both 135 

( ) / 2h mE E−  and ( ) / 2m lE E−  are shown in Fig. 2(b). 136 

We also quantitatively analyzed the variations of the calculated peaks 
mE  (green arrow in 137 

Fig. S5(c)) and hE  (orange arrow in Fig. S5(c)) with r. Table S1 shows the comparison of the 138 

fitting parameters in 
2

0 /E E C r= +  for the peak position mE  and hE  in the calculations and 139 

experiments. The calculation results are in good agreement with the experimental results. 140 

  141 

Fig. S5: (a) Raw data of dI/dV curves obtained at corner and edge sites with different r. (b) 142 

(dI/dV)/(I/V) spectra. (c) Calculated LDOS at the edge- and corner-sites based on the Green’s 143 
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function method. The middle- and high-energy peaks positions are marked by green and orange 144 

arrows, respectively. Curves in (a), (b) and (c) are shifted for clarity. 145 

 146 

Table S1. Fitting parameters in 
2

0 /E E C r= +  and 
2/E E C r  = + for experiments and 147 

calculations. 148 

 149 

 
0E  or E  (meV) C  or C  (meV•nm2) 

lE  (Exp.) -58.8 ± 3.3 25.2 ± 19.9 

mE  (Exp.) -62.1 ± 5.2 571.0 ± 34.5 

mE  (Calc.) -64.3 ± 1.2 -505.0 ± 3.4 

hE  (Exp.) -66.5 ± 2.3 1245.5 ± 21.2 

hE  (Calc.) -61.4 ± 1.0 -1010.0 ± 9.2 

2

(

(

) / 2

) /

h m

m lE

E

E

E −

−
 (Exp.) 1.0 ± 2.2 273.9 ± 14.5 

2( ) /h mEE −  (Calc.) -1.7 ± 1.2 249.3 ± 8.1 

 150 

 We note that for both the raw data of dI/dV spectra and the normalized (dI/dV)/(I/V) curves, 151 

there is a shoulder at the corner site, e.g. around 50 mV for r = 1.75 nm, which also exists in the 152 

calculated results with the Green’s function method. We find it also exhibits an inverse square 153 

relationship with r. To analyze its origin, we plotted the peak energy as the function of r. After a 154 

careful analysis, we found that it is related with the eigen energy of the corral marked by the dashed 155 

circle in Fig. S6(a). The eigen energy inside of a circular corral is ,

2 2

0 , / (2 *)
n l n lE E k m= + , where 156 

, , /n l n lk z R=  with (n,l) as the quantum number [17]. Here,  is the reduced Planck constant, 157 

,n lz  is the nth zero crossing of lth order Bessel function and m* is the effective mass of the surface 158 

state. ,n lE  refers to the state related to the quantum number (n,l). The energy position in the 159 

LDOS calculated with the Green’s function method agrees well with the eigen energy 1,1E  of the 160 
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marked corral (Fig. S6(b)). Due to the weak strength of the confinement, it appears as a shoulder 161 

in LDOS.  162 

 163 

 164 

Fig. S6: (a) The outer circular corral with radius R. (b) The comparison of the eigen energy 1,1E  165 

of the circular corral with the energy of the shoulder at the corner site calculated by Green’s 166 

function. 167 

 168 

Above, we discussed the calculated results for an ideal lattice. In real experiments, it is 169 

difficult to position the Fe adatoms to the ideal lattice sites, especially a Lieb lattice has a 4-fold 170 

symmetry while the Ag(111) substrate has a 6-fold symmetry. We find that the experimental error 171 

margin for positioning the Fe adatoms is ~0.2 nm in lateral. To accommodate the influence of the 172 

inaccuracy of Fe adatom positioning, we also made the calculation for a similar structure with the 173 

adatom randomly distributed within 0.2 nm away from the ideal lattice site. As shown in Fig. S7, 174 

the calculated spectra at both corner and edge sites are similar for the cases with and without 175 

disorder. Thus, we conclude that the effect of small disorder is negligibly small. 176 
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  177 

Fig. S7: Comparison of the calculated spectra with and without disorder.  178 

   179 

S-4. THE INFLUENCE OF THE UNIT CELL SIZE 180 

According to the Green’s function method, we calculated the LDOS for a 4 4  and 5 5  181 

Lieb lattice with 2r = 4.5 nm, respectively. We found that the curves are almost the same for these 182 

two different sizes (Fig. S8). Thus, we conclude that the 4 4  lattice is sufficient to demonstrate 183 

the properties of Lieb lattice. This is in good agreement with previous analysis [18, 19]. 184 

 185 
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 186 

Fig. S8: The calculated LDOS for a 4 4  and 5 5  Lieb lattice via the Green’s function method. 187 

The lattice constant 2r is 4.5 nm. 188 

S-5. LDOS MAPS COMPARISON OF THE CALCULATED AND 189 

EXPERIMENTAL RESULTS 190 

To focus our discussion on the distance dependent overlap energy, the LDOS maps in Fig. 3(b) 191 

is obtained through the tight-binding calculations only. The scattering of the surface state is 192 

neglected. The features at the middle of the Lieb lattice at energy mE  and the ring-shaped features 193 

at hE  in Fig. 1(c) are the interference pattern caused by the scattering of the surface state. To 194 

further confirm this, we calculated the LDOS map utilizing the Green’s function method. As shown 195 

in Fig. S9, though not exactly the same, the calculations including the scattering effect do represent 196 

close similarity with the experimental observations and the features mentioned above are 197 

essentially shown. We note that, in our Green’s functions calculation, we only consider the 198 

scattering of the surface state by the Fe adatom as well as the hybridization of Fe 4s state and the 199 

surface state of Ag(111). For more accurate analysis, first-principle calculations may be needed. 200 
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 201 

Fig. S9: Comparison of the calculated LDOS maps obtained with Green’s function method and 202 

the experimental results at lE , mE  and hE  (r = 2.25 nm). 203 

 204 

S-6. ARTIFICIAL IRON LIEB LATTICE ON SILVER(100) 205 

We constructed a series of Lieb lattices on Ag(100) in a similar way as we did on Ag(111). 206 

The representative topographic image is shown in the inset of (Fig. S10(a)). The dI/dV spectra of 207 

corner site, edge site and an isolated adatom are almost the same even when we approached a value 208 

of r of only 1 nm. Namely, no apparent electronic signal of Lieb lattice is observed. Because it is 209 

difficult to construct a Lieb lattice with smaller lattice constant, we constructed twin atoms on 210 

Ag(100) and investigated the dI/dV on top of them with different interatomic separations as shown 211 

in (Fig. S10(b)). It is found that there are no apparent differences in dI/dV between the spectra 212 

obtained on top of the twin atoms with r approaching 0.64 nm and that obtained on an isolated 213 

adatom (r > 2.8 nm). 214 

 215 
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  216 

Fig. S10: (a) STM morphologic image and corresponding dI/dV spectra at corner- and edge-sites 217 

of a 4×4 Lieb lattice constructed by Fe adatoms on Ag(100) with 𝑟 = 1.25 nm. The spectrum of a 218 

single isolated Fe adatom is also included for comparison. (b) STM image and dI/dV spectra of Fe 219 

adatoms on Ag(100) (STM image: 0.5biasV =  V, 1.0I =  nA. dI/dV spectra: 0.1biasV =  V, 220 

1.0I =  nA, mod 20V =  mV). 221 
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