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PHYSICAL MODELS

1. Model Details

First we consider two-dimensional Ising model on square lattice at the critical point 𝑇𝑐 ≈ 2.269𝐽 and the Hamiltonian is shown
in Eq.(1) of the main text, which can be solved with classica Monte Carlo simulations. 𝜎𝑖 and 𝜎𝑗 refers to nearest neighbors of
classical spins and take values: ±1. We set the interaction strength 𝐽 of all pairs of neighbors to be 1.
Next, we consider Hubbard model on the honeycomb lattice, which can be solved with determinant quantum Monte Carlo

(DQMC) at half-filling. In Eq.(3) of main text, 𝑡 is the hopping parameter for the kinetic energy, 𝑈 is the repulsive Coulomb
interaction between electrons on the same lattice site, 〈𝑖, 𝑗〉 represents a pair of nearest-neighbor sites in the lattice, the operators
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𝑐𝑖,𝜎 are the number operators which count numbers of fermions of spin 𝜎 on the site 𝑖.
In loss function Eq.(4) in the main text, 𝑆 refers to the structure factor: 𝑆(𝑸) = 1
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′ 𝑐𝑖,𝛼′ . Note here −→𝜎 denotes the Pauli matrices and so the z-component 𝑠𝑧
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2. Determinant Quantum Monte Carlo (DQMC)

The partition function 𝑍 = Tr{𝑒−𝛽𝐻 } is expressed as a path integral by discretizing the inverse temperature 𝛽 into 𝐿𝜏 slices of
length Δ𝜏. Then, after Trotter-Suzuki decomposition, the Hamiltonian are separated in each time slice and 𝑍 can be written as
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[
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where 𝐻𝑘 = −𝑡∑〈𝑖, 𝑗 〉,𝜎 (𝑐†𝑖,𝜎𝑐 𝑗 ,𝜎 +ℎ.𝑐.) is the kinetic term and 𝐻𝑈 = 𝑈
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To treat the quartic interaction term, the discrete Hubbard-Stratonovich transformation[1-3] can be applied and then 𝑒−Δ𝜏𝐻𝑈 =
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interaction part together, the term in partition function becomes
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where 𝐻𝑘 is rewritten with operator 𝑇𝜎 = −𝑡∑𝑖, 𝑗 𝑐
†
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𝑐 𝑗 ,𝜎 + ℎ.𝑐.. According to the feature of fermion operator[1], a fermion
operator (�̂�𝑙 for example) with a quadratic form like �̂�𝑙 =

∑
𝑖, 𝑗 𝑐

†
𝑖
(𝑀𝑙)𝑖 𝑗𝑐 𝑗 satisfies

Tr
[
𝑒−�̂�1𝑒−�̂�2 · · · 𝑒−�̂�𝐿

]
= Det[𝐼 + 𝑒−𝑀1𝑒−𝑀2 · · · 𝑒−𝑀𝐿 ] . (S3)

Then the partition function could be finally written in determinant form as
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in which

𝐵𝜎 (𝑙2, 𝑙1) =
𝑙2∏

𝑙=𝑙1+1
𝑒𝜎aDiag{𝑠𝑖,𝑙 }𝑒−𝛥𝜏𝑇 , (S5)

where 𝜎 = {1,−1} in calculation corresponding mark {↑, ↓}, and 𝑇 is the matrix corresponding to the operator 𝑇𝜎 . Thus, we
have introduced a sum over the field of auxiliary variables 𝑠𝑖,𝑙 in a (𝑑 + 1)-dimension space (𝑑 for spatial denoted by 𝑖 and 1
for imaginary time denoted by 𝑙) as shown in Fig. S1 (b), and the fermionic degrees of freedom in the quadratic form have been
integrated out analytically. Note 𝐵𝜎 is an 𝑁 × 𝑁 matrix that depends on the auxiliary configurations.

3. Autocorrelation Function

The autocorrelation function for an observable 𝑂 is defined as:

𝐴𝑂 (𝑡) = 〈𝑂 (𝑖 + 𝑡)𝑂 (𝑖)〉 − 〈𝑂〉2
〈𝑂2〉 − 〈𝑂〉2

. (S6)

For MCMC, 𝑖 and 𝑡 denotes the simulation time, normally in units of the MC sweeps (one sweep means doing flipping attempts
over all the spins of the configuration), and the averages are over the reference time 𝑖. For Neural Network results, when computing
the formal autocorrelation function, 𝑖 and 𝑡 simply refers to the serial numbers of the configurations.

NEURAL NETWORK DETAILS

1. Architecture
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FIG. S1. Schematic figures for the generative neural networks used in this study. (a) shows an example of periodic boundary condition on the
left, and we use the neural network structure on the right for the training of the 2d Ising model, where Conv2d stands for 2d convolutional layer.
(b) displays the auxiliary field configuration in DQMC for the Hubbard model, with the (2 + 1)𝑑 space-time of 𝛽 × 𝐿 × 𝐿. The auxiliary fields
of ±1 live on each space-time lattice site. (c) demonstrates the schematic structure of 3d transposed convolutional network we employed for
the training of the 2d Hubbard model on 6 × 6 × 2 honeycomb lattice.

For 2d Ising model on square lattice (16×16 for example), the network structure is shown in Fig. S1 (a). For the random input,
we fix its shape to be the same as that of the Monte Carlo configurations. Inside the network, inspired by the network structure
in Ref.[30], we use three 2d convolutional layers, with 64 filters of size 8 × 8 for the first layer, 32 filters of size 1 for the second,
and 1 filter of size 6 × 6 for the third layer. We choose rectified linear function ReLU(x) = max(0, x) in the first and second
convolutional layers and sigmoid function 𝜎(𝑥) = 1/(1 + 𝑒−𝑥) in the third. We also apply periodic boundary condition (PBC)
layers each time before the convolutional layers if the kernel dimension is larger than one, which provides the configuration
tensors with paddings of boundary elements instead of 0s (the padding size is decided by the size of filters in the corresponding
convolutional layer, so as to ensure the shape invariance of the configuration tensors after convolutional operations).
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In the case of 2d Hubbard model on the honeycomb lattice (6×6×2 for example), we switch from classical Ising configurations
to the auxiliary field configurations of the DQMC[3,33], with the configuration space of 𝛽 × 𝐿 × 𝐿 × 2 where 𝛽 = 1/𝑇 is the
inverse temperature. We set 𝛽 = 6 and the Trotter discretization Δ𝜏 = 0.1, so the DQMC auxiliary field configurations are of
shape 60 × 12 × 6 (note the 2 site per unit cell for the honeycomb lattice), as schematically shown in Fig. S1 (b). As shown in
Eq.(4), we have to carry out large-scale determinant computation to measure the observables from generated configurations in
order to compute the loss, and thus the complexity for the optimization is much larger than the case of classical model. Therefore,
instead of the previous PBC-based network structure, we try another architecture of transposed convolutional layers and feed
smaller random configurations as input. We find it is still capable of fitting the results we want and optimize faster. As shown
in Fig. S1 (c) for the example model, we build two 3d transposed convolutional layers, with all filters using valid padding and
sigmoid function as activation. There are 20 filters of size 16 × 6 × 3 in the first layer and 1 filter of size 36 × 6 × 3 in the second
and the random input configurations are of shape 10 × 2 × 2 while the predicted output are of shape 60 × 12 × 6.

2. Optimization

In order to optimize such neural networks, for both classical and quantummodels, we prepare 1000 sets of observablesmeasured
from MC simulations and take 1000 input random configurations which will be processed into generated configurations. The
comparison in loss function is randomly distributed without any grouping. For the choice of observables in the defined loss
functions, we simply pick some from the ones we usually focus on. In the Ising case, we take the batch size to be 5 and epoch
number to be up to 150 as the computation is quite easy. While in the Hubbard case, we run at most 15 epochs with a batch size
of 3. We optimize the network parameters using Adam[63] with conventional learning rate 10−3, 𝛽1 = 0.9, and 𝛽2 = 0.999.
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