## Supplementary Material for "Novel boron nitride polymorphs with graphitediamond hybrid structure"

Kun Luo(罗坤)<sup>1†</sup>, Baozhong Li(李宝忠)<sup>1†</sup>, Lei Sun(孙磊)<sup>1</sup>, Yingju Wu(武英举)<sup>1,2\*</sup>, Yanfeng Ge(盖彦峰)<sup>1,2</sup>, Bing Liu(刘兵)<sup>1</sup>, Julong He(何巨龙)<sup>1</sup>, Bo Xu(徐波)<sup>1</sup>, Zhisheng Zhao(赵智胜)<sup>1\*</sup>, and Yongjun Tian(田永君)<sup>1</sup>

<sup>1</sup>Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China

<sup>2</sup>Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China

<sup>†</sup>These authors contributed equally to this work

\*Corresponding authors. Email: zzhao@ysu.edu.cn; wuyj@ysu.edu.cn



**Fig. S1.** Calculated phonon spectra of BN hybrid structures at ambient pressure. No imaginary phonon frequencies throughout the whole Brillouin zone indicates that all the structures are dynamically stable at ambient pressure.



**Fig. S2.** Crystal structure, changes in enthalpy with pressure, ambient-pressure phonon spectrum and band structure of the Gradia-HZ in carbon form. (a) The representative periodic crystal structure of Gradia-HZ in carbon form, which was composed of graphite-like and HD units. The average interlayer spacing of the graphite-like layers in the hybrid structure was ~3.3 Å. The one-to-one correspondence between the graphite-like layer and HD unit is highlighted in red. (b) Changes in enthalpy of Gradia-HZ in carbon form with respect to graphite, as a function with pressure, showing that Gradia-HZ in carbon form was more stable than graphite above a pressure of 16 GPa. (c) Phonon spectrum of Gradia-HZ in carbon form calculated at ambient pressure. No imaginary phonon frequencies were observed throughout the whole Brillouin zone, which indicated that the Gradia-HZ in carbon form was dynamically stable. (d) Band structure of Gradia-HZ in carbon form, indicating that it was a semiconductor with a narrow bandgap of 0.26 eV.

| Material | Structure type | S.G.          | Lattice<br>parameters                                            | Atomic positions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|----------|----------------|---------------|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| BN       | Gradia-CO      | <i>Pm</i> (6) | a = 3.622<br>b = 2.516<br>c = 18.525<br>$\beta = 91.731^{\circ}$ | B: 1b (0.252, 0.5, 0.648), 1b (0.269, 0.5, 0.925), 1b (0.257, 0.5, 0.787),<br>1b (0.772, 0.5, 0.280), 1b (0.395, 0.5, 0.482), 1b (0.216, 0.5, 0.071),<br>1a (0.807, 0, 0.984), 1a (0.763, 0, 0.855), 1a (0.069, 0, 0.383),<br>1a (0.765, 0, 0.577), 1a (0.754, 0, 0.718), 1a (0.491, 0, 0.176),<br>N: 1b (0.980, 0.5, 0.587), 1b (0.999, 0.5, 0.722), 1b (0.581, 0.5, 0.209),<br>1b (0.002, 0.5, 0.000), 1b (0.008, 0.5, 0.859), 1b (0.172, 0.5, 0.414),<br>1a (0.512, 0, 0.928), 1a (0.493, 0, 0.652), 1a (0.504, 0, 0.790),<br>1a (0.867, 0, 0.313), 1a (0.305, 0, 0.104), 1a (0.523, 0, 0.510)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
|          | Gradia-CA      | <i>Cm</i> (8) | a = 2.515<br>b = 13.007<br>c = 20.542<br>$a = 95.966^{\circ}$    | B: $2a (0.5, 0.469, 0.377), \overline{2a (0.5, 0.619, 0.542)}, 2a (0.5, 0.262, 0.613), 2a (0.5, 0.365, 0.783), 2a (0.5, 0.486, 0.169), 2a (0.5, 0.444, 0.582), 2a (0.5, 0.818, 0.515), 2a (0.5, 0.715, 0.341), 2a (0.5, 0.192, 0.443), 2a (0.5, 0.979, 0.273), 2a (0.5, 0.651, 0.921), 2a (0.5, 0.545, 0.749), 2a (0.5, 0.210, 0.028), 2a (0.5, 0.007, 0.852), 2a (0.5, 0.903, 0.682), 2a (0.5, 0.953, 0.482), 2a (0.5, 0.734, 0.133), 2a (0.5, 0.466, 0.957), 2a (0.5, 0.232, 0.238), 2a (0.5, 0.988, 0.064), 2a (0.5, 0.825, 0.886), 2a (0.5, 0.724, 0.715), 2a (0.5, 0.185, 0.817), 2a (0.5, 0.084, 0.647), N: 2a (0.5, 0.354, 0.922), 2a (0.5, 0.501, 0.519), 2a (0.5, 0.987, 0.995), 2a (0.5, 0.237, 0.169), 2a (0.5, 0.501, 0.519), 2a (0.5, 0.610, 0.689), 2a (0.5, 0.966, 0.411), 2a (0.5, 0.476, 0.307), 2a (0.5, 0.692, 0.481), 2a (0.5, 0.985, 0.204), 2a (0.5, 0.208, 0.376), 2a (0.5, 0.329, 0.557), 2a (0.5, 0.429, 0.724), 2a (0.5, 0.969, 0.623), 2a (0.5, 0.070, 0.791), 2a (0.5, 0.724, 0.063), 2a (0.5, 0.533, 0.894), 2a (0.5, 0.892, 0.825), 2a (0.5, 0.787, 0.656), 2a (0.5, 0.728, 0.273), 2a (0.5, 0.711, 0.858)$ |  |  |  |
|          | Gradia-HB      | Pm (6)        | a = 6.140<br>b = 2.511<br>c = 20.568<br>$\beta = 95.683^{\circ}$ | B: $1a (0.334, 0, 0.237), 1a (0.530, 0, 0.044), 1a (0.106, 0, 0.425),$<br>1a (0.828, 0, 0.236), 1a (0.710, 0, 0.440), 1a (0.001, 0, 0.037),<br>1a (0.443, 0, 0.892), 1a (0.279, 0, 0.720), 1a (0.707, 0, 0.573),<br>1a (0.300, 0, 0.598), 1a (0.854, 0, 0.867), 1a (0.875, 0, 0.745),<br>1b (0.257, 0.5, 0.336), 1b (0.010, 0.5, 0.522), 1b (0.410, 0.5, 0.138),<br>1b (0.925, 0.5, 0.137), 1b (0.437, 0.5, 0.508), 1b (0.735, 0.5, 0.335),<br>1b (0.161, 0.5, 0.818), 1b (0.991, 0.5, 0.646), 1b (0.566, 0.5, 0.794),<br>1b (0.588, 0.5, 0.671), 1b (0.152, 0.5, 0.941), 1b (0.727, 0.5, 0.964),<br>N: $1a (0.436, 0, 0.106), 1a (0.697, 0, 0.922), 1a (0.282, 0, 0.304),$<br>1a (0.765, 0, 0.302), 1a (0.958, 0, 0.105), 1a (0.545, 0, 0.626),<br>1a (0.714, 0, 0.798), 1a (0.140, 0, 0.651), 1a (0.558, 0, 0.500),<br>1a (0.971, 0, 0.480), 1a (0.281, 0, 0.942), 1a (0.119, 0, 0.774),<br>1b (0.356, 0.5, 0.205), 1b (0.172, 0.5, 0.400), 1b (0.598, 0.5, 0.020),<br>1b (0.260, 0.5, 0.553), 1b (0.427, 0.5, 0.725), 1b (0.998, 0.5, 0.872),<br>1b (0.407, 0.5, 0.847), 1b (0.853, 0.5, 0.577), 1b (0.832, 0.5, 0.700)                |  |  |  |
|          | Gradia-HC      | <i>Pm</i> (6) | a = 6.050<br>b = 2.509<br>c = 21.164<br>$\beta = 91.881^{\circ}$ | B: $1a (0.053, 0, 0.581), 1a (0.038, 0, 0.869), 1a (0.131, 0, 0.702), 1a (0.143, 0, 0.986), 1a (0.547, 0, 0.726), 1a (0.472, 0, 0.008), 1a (0.636, 0, 0.560), 1a (0.628, 0, 0.846), 1a (0.986, 0, 0.175), 1a (0.950, 0, 0.380), 1a (0.485, 0, 0.210), 1a (0.405, 0, 0.409), 1b (0.801, 0.5, 0.655), 1b (0.312, 0.5, 0.510), 1b (0.294, 0.5, 0.797), 1b (0.867, 0.5, 0.481), 1b (0.878, 0.5, 0.774), 1b (0.374, 0.5, 0.914), 1b (0.786, 0.5, 0.946), 1b (0.384, 0.5, 0.631), 1b (0.979, 0.5, 0.071), 1b (0.979, 0.5, 0.278), 1b (0.498, 0.5, 0.110), 1b (0.461, 0.5, 0.310), N: 1a (0.750, 0, 0.498), 1a (0.237, 0, 0.637), 1a (0.228, 0, 0.919), 1a (0.825, 0, 0.614), 1a (0.811, 0, 0.903), 1a (0.501, 0, 0.076), 1a (0.473, 0, 0.276), 1a (0.982, 0, 0.105), 1a (0.973, 0, 0.311), 1b (0.985, 0.5, 0.709), 1b (0.999, 0.5, 1.000), 1b (0.077, 0.5, 0.540), 1b (0.061, 0.5, 0.827), 1b (0.492, 0.5, 0.567), 1b (0.482, 0.5, 0.851), 1b (0.570, 0.5, 0.685), 1b (0.545, 0.5, 0.972), 1b (0.490, 0.5, 0.176), 1b (0.431, 0.5, 0.376), 1b (0.987, 0.5, 0.209), 1b (0.936, 0.5, 0.413)$                                                      |  |  |  |

**Table S1.** Space group (S.G.), lattice parameters (Å), and atomic Wyckoff positions of five BN hybrid structures and Gradia-HZ in carbon form optimized at ambient pressure.

| Material | Structure | S.G.                                    | lattice<br>parameters                                            | Atomic positions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|----------|-----------|-----------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| BN       | Gradia-HZ | <i>P2</i> <sub>1</sub><br>(4)           | a = 6.741<br>b = 4.244<br>c = 24.060<br>$\beta = 93.670^{\circ}$ | B: $2a (0.243, 0.841, 0.711), 2a (0.245, 0.334, 0.661),$<br>2a (0.223, 0.312, 0.768), 2a (0.242, 0.836, 0.608),<br>2a (0.656, 0.842, 0.750), 2a (0.241, 0.335, 0.556),<br>2a (0.401, 0.815, 0.197), 2a (0.307, 0.816, 0.092),<br>2a (0.154, 0.317, 0.046), 2a (0.038, 0.812, 0.160),<br>2a (0.249, 0.319, 0.150), 2a (0.328, 0.315, 0.873),<br>2a (0.707, 0.334, 0.702), 2a (0.882, 0.319, 0.114),<br>2a (0.941, 0.816, 0.057), 2a (0.518, 0.317, 0.081),<br>2a (0.611, 0.322, 0.185), 2a (0.577, 0.816, 0.023),<br>2a (0.788, 0.317, 0.011), 2a (0.949, 0.346, 0.208),<br>2a (0.760, 0.336, 0.496), 2a (0.757, 0.336, 0.600),<br>2a (0.258, 0.337, 0.349), 2a (0.239, 0.336, 0.452),<br>N: $2a (0.750, 0.671, 0.288), 2a (0.758, 0.170, 0.340),$<br>2a (0.349, 0.671, 0.250), 2a (0.758, 0.171, 0.444),<br>2a (0.599, 0.688, 0.803), 2a (0.693, 0.691, 0.908),<br>2a (0.751, 0.190, 0.851), 2a (0.672, 0.191, 0.127),<br>2a (0.286, 0.171, 0.297), 2a (0.118, 0.191, 0.887),<br>2a (0.058, 0.691, 0.943), 2a (0.423, 0.691, 0.977),<br>2a (0.388, 0.192, 0.816), 2a (0.342, 0.171, 0.440),<br>2a (0.220, 0.171, 0.504), 2a (0.342, 0.171, 0.400),<br>2a (0.240, 0.171, 0.504), 2a (0.242, 0.171, 0.400),<br>2a (0.240, 0.171, 0.504), 2a (0.242, 0.171, 0.400),<br>2a (0.743, 0.171, 0.652), 2a (0.761, 0.171, 0.548) |  |
| Carbon   | Gradia-HZ | <i>P</i> 2 <sub>1</sub> / <i>m</i> (11) | a = 21.998<br>b = 4.182<br>c = 6.640<br>$\beta = 88.249^{\circ}$ | C: $4f(0.788, 0.566, 0.157), 4f(0.807, 0.089, 0.946),$<br>4f(0.616, 0.083, 0.216), 4f(0.672, 0.582, 0.205),<br>4f(0.561, 0.583, 0.227), 4f(0.505, 0.083, 0.240),<br>4f(0.768, 0.086, 0.591), 4f(0.716, 0.581, 0.651),<br>4f(0.662, 0.083, 0.698), 4f(0.394, 0.083, 0.272),<br>4f(0.449, 0.583, 0.253), 4f(0.273, 0.586, 0.805),<br>4f(0.162, 0.564, 0.696), 4f(0.024, 0.063, 0.069),<br>4f(0.099, 0.063, 0.776), 4f(0.085, 0.563, 0.991),<br>4f(0.174, 0.064, 0.481), 4f(0.123, 0.564, 0.345),<br>4f(0.988, 0.063, 0.716), 4f(0.085, 0.564, 0.345),<br>4f(0.050, 0.563, 0.638), 4f(0.865, 0.564, 0.869),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |

Table S1. (continued)

| C        | Gradia-CO | Gradia-CA | Gradia-HB | Gradia-HC | Gradia-HZ | Gradia-HZ     |
|----------|-----------|-----------|-----------|-----------|-----------|---------------|
| $c_{ij}$ | (BN form) | (Carbon form) |
| $C_{11}$ | 356.9     | 295.8     | 594.6     | 760.2     | 426.1     | 450.4         |
| $C_{22}$ | 977.2     | 921.9     | 995.5     | 963.3     | 928.5     | 1181.5        |
| $C_{33}$ | 434.3     | 521.8     | 484.3     | 434.0     | 744.6     | 926.6         |
| $C_{44}$ | 544.6     | 286.0     | 200.4     | 192.6     | 333.2     | 451.7         |
| $C_{55}$ | 184.0     | 209.8     | 151.1     | 34.4      | 27.3      | 67.1          |
| $C_{66}$ | 139.9     | 232.6     | 320.1     | 353.2     | 143.2     | 186.6         |
| $C_{12}$ | 124.1     | 66.3      | 120.5     | 135.6     | 29.1      | 14.0          |
| $C_{13}$ | 169.4     | 251.7     | 146.7     | 120.5     | 74.2      | 107.8         |
| $C_{15}$ | -91.7     | -13.9     | 224.0     | -76.9     | -25.4     | -80.1         |
| $C_{23}$ | 109.7     | 144.4     | 71.4      | 61.3      | 117.9     | 113.2         |
| $C_{25}$ | -53.1     | 67.7      | 33.1      | -18.2     | -13.3     | 11.2          |
| $C_{35}$ | -257.9    | 139.7     | 62.7      | -7.2      | -61.9     | 111.7         |
| $C_{46}$ | -244.8    | 105.5     | 65.9      | -48.6     | -28.3     | 22.6          |

**Table S2.** Calculated elastic constants ( $C_{ij}$ , GPa) of the five BN hybrid structures and the Gradia-HZ in carbon form at ambient pressure.