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I. NUMERICAL SIMULATION OF CZ GATE

We designed three different couplers and compared the quality of different designs according

to the CZ error achieved under different qubit detune frequency ∆ = ω10 −ω01. We first set g = 0

for three types of the coupler, labeled as Con. 1, Con. 2, and Con. 3. We set different g for idle

working points to find the effect of idle point setting, labeled as Con. 3, Con. 4, and Con. 5.

Also, we test the influence of envelopes of the microwave by comparing two types of envelopes

labeled as Con. 3, and Con. 6. Fig.S1 shows 6 condition for numerical simulation. Fig.S2 shows

the different CZ error results between coupler design 1 and coupler design 3. Fig.S3 shows the

different CZ error results between coupler design 2 and coupler design 3. Fig.S4 shows the results

of different coupling strength setting for idle points. Fig.S5 shows the results of different initial

envelope settings for idle points.

For each ∆/2π in Fig. 4(d) in main text, we set the initial ratio of λ⃗ as λ1 : λ2 : λ3 : λ4 =

−0.0760 : 1.0000 : 0.4222 : −0.1636, and chose static frequency difference between |11⟩ and

|20⟩ as the initial microwave frequency. Also, the averaging microwave amplitude Ā(t) was set

to be 0.4, 0.045 or 0.05. Then we used the Nelder Mead algorithm to optimize the fidelity of

the CZ gate. Fig.S6 and Fig.S7 show the numerical optimization and time domain evolution at

∆/2π = 0.11724 GHz, where no unwanted interaction is activated and CZ gate with 99.99972%

fidelity is achieved. Fig.S8 and Fig.S9 show the numerical optimization and time domain evolution

at ∆/2π = 0.09248 GHz, where no unwanted interaction is activated and CZ gate with 99.99960%

fidelity is achieved. Fig.S10 and Fig.S11 show the numerical optimization and time domain evo-

lution at ∆/2π = 0.10486 GHz, where the interaction between |01⟩ and |01⟩ is activated and the

optimized CZ fidelity is 99.75%. Fig.S12 and Fig.S13 show the numerical optimization and time

domain evolution at ∆/2π = 0.07391 GHz, where the interaction between |11⟩ and |02⟩ activated

and the optimized CZ fidelity is 99.39%.

II. EXPERIMENT OF CZ GATE

The definition of cross entropy benchmarking (XEB) is as below,

α =

∑
q pm(q)(Dps(q)− 1)

D
∑

q ps(q)
2 − 1

(S1)

2



with α as the sequence fidelity, D = 2N , N is the number of qubits, q is the sampled qubit state

bitstrings (for single-qubit XEB, q is 0 or 1), ps(q) is the ideal probability of q, and pm(q) is the

measured probability of q. The over lines in Eq. S1 refer to the average of the random circuits in

each cycle. Meanwhile, we use the speckle purity benchmarking (SPB) to measure the effect of

decoherence error. Here,
√
P =

√
V ar(pm)

D2(D + 1)

D − 1
. (S2)

and V ar(Pm) the variance of the experimental probabilities extracted from the XEB experiment.

Due to the readout error, the start points (m = 0) of α are not at 1 in Fig.4(c) and (d). The

setting of readout pulse in our experiment was different for |0⟩, |1⟩ measurement and for |0⟩, |1⟩,

|2⟩ measurement. For |0⟩, |1⟩ measurement, the matrixes of readout fidelity are labeled as below, F00 F01

F10 F11


Q1

=

 0.9551 0.0449

0.1581 0.8419

 (S3)

and  F00 F01

F10 F11


Q2

=

 0.9475 0.0525

0.1517 0.8483

 . (S4)

For |0⟩, |1⟩, |2⟩ measurement, the matrixes of readout fidelity are labeled as below,
F00 F01 F02

F10 F11 F12

F20 F21 F22


Q1

=


0.9050 0.0632 0.0318

0.1633 0.7779 0.0588

0.1383 0.2005 0.6612

 (S5)

and 
F00 F01 F02

F10 F11 F12

F20 F21 F22


Q2

=


0.8767 0.0534 0.0699

0.1887 0.7399 0.0714

0.1645 0.1784 0.6571

 . (S6)

Here Fij represents the probability of measuring |j⟩ when we prepared the initial state of |i⟩. In

experiment, we used the product of each matrix of single-qubit readout fidelity as the matrix of

multi-qubit readout fidelity. In Fig.4(c) and (d), the α and
√
P are calculated by the raw probability

of |0⟩, |1⟩ measurement, and the leak is the probability corrected according to the matrix of multi-

qubit readout fidelity of |0⟩, |1⟩, |2⟩ measurement. Here, leak = P|02⟩+P|12⟩+P|20⟩+P|21⟩+P|22⟩.
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FIG. S1. Different coupler designs, idle points and initial envelopes for condition 1 (con. 1) to condition 6.
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FIG. S2. Results of Con. 3 and Con. 1 of CZ optimization. (a) CZ error under the con. 1 and con. 3 for

selecting ωtarget near ω11 − ω02. The circles are CZ errors under con. 3 and con. 1 after 200 iteration of

Nelder Mead algorithm for different ∆. For some of ∆, the unnecessary resonance interactions will increase

the gate error, see Fig. 2 (d) in main text. We selected the best 50 from the results of all 100 different ∆

to calculate the average error rate, as shown by the dash line. (b) CZ error under the con. 1 and con. 3 for

selecting ωtarget near ω11 − ω20 after 200 iteration. (c) CZ error under the con. 1 and con. 3 for selecting

ωtarget near ω11 − ω02 after 50 iteration. (d) CZ error under the con. 1 and con. 3 for selecting ωtarget near

ω11 − ω20 after 50 iteration.
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FIG. S3. Results of Con. 3 and Con. 2 of CZ optimization.
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FIG. S4. Results of Con. 3, Con. 4 and Con. 5 of CZ optimization.
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FIG. S5. Results of Con. 3 and Con. 6 of CZ optimization.
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FIG. S6. Numerical optimization at ∆/2π = 0.11724 GHz in Fig. 2(d) in main text. (a) shows the qubits

work point, initial value of CZ pulse and CZ gate error during iteration. (b) shows the control pulse before

and after optimization.
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FIG. S7. Time domain quantum evolution for optimized CZ pulse at ∆/2π = 0.11724 GHz (data obtained

by numerical simulation method). The quantum state in this figure is the energy eigenstate of the static

Hamiltonian. (a) (d) show the transtion probability between different quantum states. (e) shows the proba-

bility of leakage into the excited state of the coupler. (f) shows the conditional phase during the evolution.
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FIG. S8. Numerical optimization at ∆/2π = 0.09248 GHz in Fig. 2(d) in main text.
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FIG. S9. Time domain quantum evolution for optimized CZ pulse at ∆/2π = 0.09248 GHz.
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FIG. S10. Numerical optimization at ∆/2π = 0.10486 GHz in Fig. 2(d) in main text. For this ∆, the

interaction between |01⟩ and |10⟩ is activated.
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FIG. S11. Time domain quantum evolution for optimized CZ pulse at ∆/2π = 0.10486 GHz.
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FIG. S12. Numerical optimization at ∆/2π = 0.07392 GHz in Fig. 2(d) in main text. For this ∆, the

interaction between |11⟩ and |02⟩ is activated.
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FIG. S13. Time domain quantum evolution for optimized CZ pulse at ∆/2π = 0.07392 GHz.
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