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EXPERIMENTAL SETUP

Our experimental setup is a single 171Yb+ ion in a linear Paul trap. The spin state is encoded in the |↓⟩ =∣∣2S1/2, F = 0,mF = 0
⟩

and the |↑⟩ =
∣∣2S1/2, F = 1,mF = 0

⟩
levels of the ion with atomic transition frequency ω0 =

2π × 12.6428GHz, and the bosonic mode is encoded in a radial oscillation mode with secular frequency ωm =
2π × 2.35MHz.

We use counter-propagating 355 nm pulsed laser beams with a repetition rate ωrep ≈ 2π × 118.415MHz and a
bandwidth of about 200GHz to manipulate the qubit through Raman transition. Two acousto-optic modulators
(AOMs) are used to fine-tune the frequency and the amplitude of the Raman transitions. More details can be found
in Ref. [24] of the main text.

MEASUREMENT OF PHONON POPULATION

We follow the standard method of Ref. [15,24] of the main text to fit the phonon state population. Note that after
each cycle of coherent drive and dissipation, the spin state is already pumped to |↓⟩, so we only need to apply a blue
sideband pulse with various duration t and measure the spin-up state population P↑ afterwards. It can be fitted by

P↑(t) =
1

2

[
1−

kmax∑
k=0

pke
−γkt cos(Ωk,k+1t)

]
, (S1)

where pk is the occupation in the Fock state |k⟩, γk a number-state-dependent empirical decay rate of the Rabi
oscillation, Ωk,k+1 ∝

√
k + 1 the number-state-dependent sideband Rabi frequency, and kmax the cutoff in the phonon

number. After fitting the phonon state population P = (p0, p1, · · · )T with its covariance matrix Σ, we can compute
the average phonon number n̄ = N · P where N = (0, 1, · · · ) is a row vector representing the phonon number basis.
Assuming the fitted parameters follow a joint Gaussian distribution, we can estimate the variance of n̄ as σ2

n̄ = NΣNT ,
hence the error bar of the average phonon number of one standard deviation is σn̄ =

√
NΣNT .

THE CALIBRATION OF MODEL PARAMETERS

In the quantum Rabi model Hamiltonian (see formula (1) in the main text), three parameters ωa, ωf and λ fully
determine the Hamiltonian. In experiment simulation with trapped ion, ωa = (δb + δr)/2, ωf = (δb − δr)/2 and
λ = ΩSB/2 where δb (r) is the detuning of the differential Raman laser frequency from the blue (red) sideband of the
motional mode and ΩSB is the sideband Rabi frequency. Before every experiment, we need to calibrate the actual
value of δb, δr and ΩSB. In terms of the calibration of δb and δr, we first use the microwave Ramsey spectroscopy
to determine the qubit frequency ωq whose measurement precision is on the order of 2π × 5Hz; Then we use the
Raman sideband Ramsey spectroscopy to determine the secular frequency ωm of the ion motion whose measurement
precision is on the order of 2π × 100Hz; Finally, we set the two differential Raman laser frequencies at ωq + ωm + δb
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and ωq−ωm+δr respectively. Using the above method, the deviation of the actual value of δb (r) from the target value
of δb (r) can be well bounded by the measurement precision of the secular frequency, i.e. the order of 2π × 100Hz.
This means the ratio parameter uncertainty for R = 25, 50, 75 and 100 is ±1.3, ±2.5, ±3.8 and ±5.0 respectively, i.e.
roughly 5% relative error. Also the trap frequency fluctuation during the measurement is on the order of 2π× 200Hz
(considering the 200 s−1 motional dephasing rate described below), this will induce about 10% ratio fluctuation in
the experiment. This ratio calibration uncertainty and the ratio fluctuation during the measurement are the main
error sources of the experimental data. In terms of the calibration for the sideband Rabi frequency ΩSB, we just fix
the laser beam intensity and scan the sideband Rabi oscillation for several cycles and fit out the Rabi frequency. The
laser intensity fluctuation is below 1%, hence the fluctuation of Rabi frequency is in the same order. This error has
tiny effect to experiment data.

NOTE ON THE BREAKDOWN OF THE LINEAR APPROXIMATION OF THE RED SIDEBAND PULSE

The validity of our experiment is based on the assumption that we need to make sure that the cooling time duration
τc is much smaller than the inverse of the red sideband Rabi rate Ωc, therefore sin2(

√
nΩcτc/2) can be linearized if

the phonon number n is not too large. The consequence of going beyond is that when the experiment steps into the
regime where the average phonon number of the state is too large, the terms in the high phonon number cannot be
efficiently cooled down by using the red sideband pulse plus the optical pumping. Therefore, the steady state is hard
to be reached in a practical numerical simulation time and may be very different from the prediction of the current
model. However, with the average phonon number below 10, we have verified that the numerical simulations with or
without the linear approximation have nearly the same consequence. Therefore, in our experimental regime, the red
sideband pulse plus the spin reset can be well approximated by the dissipative channel L̂ = Ωc

√
τcâ/2.

NUMERICAL AND EXPERIMENTAL INVESTIGATION OF THE DISSIPATIVE PHASE TRANSITION

Numerical investigation

To further prove the existence of a dissipative phase transition in our model and to understand the critical behavior,
here we present numerical results for the finite-size scaling as the frequency ratio R ≡ (δb + δr)/(δb − δr) approaches
infinity. To obtain the steady state, we alternatingly simulate the unitary evolution under ĤQRM and the dissipative
process governed by the Lindblad superoperator L̂ = Ωc

√
τcâ/2 together with a spin reset as described in the main

text. Note that these two processes are described in two different interaction pictures with ∆Ĥ0 ≡ Ĥ ′
0 − Ĥ0 =

ωaσ̂z/2+ωf â
†â, thus a time-dependent relative phase needs to be included in the simulation when switching between

the two interaction pictures. We repeat these two processes until the calculated average phonon number ⟨â†â⟩
converges.

Here we consider the same parameters as in the main text. That is, in each cycle the quantum Rabi model is
applied for τ = 20µs at varying sideband Rabi frequency ΩSB; the sideband cooling pulse with Ωc = 2π × 20 kHz is
applied for τc = 5µs; additional 10µs for optical pumping and idling time are included in the sideband cooling stage
to give a total duration τd = 15µs when computing the relative phase mentioned above. We fix δb − δr = 2π × 2 kHz
and vary δb + δr to set the ratio R from 50 to 3200. As shown in Fig. S1(a), we plot the average phonon number
⟨â†â⟩ versus the dimensionless coupling g ≡ 2ΩSB/

√
δ2b − δ2r from g = 1.0 to g = 1.4. For g below gc ≈ 1.351, the

average phonon number in the steady state saturates to a finite value as we increase R; while for g > gc, the steady
state phonon number diverges in the limit R → ∞ (note that for increasing R we need to use larger phonon number
cutoff in the numerical simulation to suppress the truncation error). In Fig. S1(b) we plot the scaling behavior of
the steady-state phonon number with respect to the ratio R at fixed g, and fit the numerical results to obtain the
asymptotic form as R approaches infinity. As shown in the figure, for g = 1.3 in the weak coupling region the phonon
number eventually saturates at Ns = 1.54, while for g = 1.5 in the strong coupling region a power-law scaling indicates
an infinite steady-state phonon number as R → ∞. This phenomenon of a diverging phonon number is similar to
the case considered in Ref. [22] in the main text. In Fig. S1(c) we plot the saturation value Ns of the steady state
phonon number in the limit R → ∞ versus g in the g < gc region. We further fit the data near the critical point as
Ns = C(gc − g)−ν as shown in the inset, from which we extract the critical point gc ≃ 1.351 ± 0.002 and a critical
exponent ν ≃ 1.092 ± 0.029, the error bar is 1 S.D. from fitting. In Fig. S1(d), we plot the scaling behavior of the
phonon number at the critical point gc = 1.351, which fits a power-law behavior ⟨a†a⟩ ∝ R0.531.
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FIG. S1: Numerical study of the dissipative phase transition. (a) The steady state phonon number ⟨â†â⟩ versus the
dimensionless coupling strength g at various ratio R ranging from 50 to 3200. (b) The steady state phonon number ⟨â†â⟩
versus the ratio parameter R at different coupling strengths (g = 1.3 and g = 1.5). In the weak coupling region (g = 1.3) the
phonon number saturates as R → ∞, while in in the strong coupling region (g = 1.5), the phonon number shows a power-law
scaling with R and approaches infinity as R → ∞. (c) The saturation value of the steady state phonon number Ns ≡ ⟨â†â⟩s
in the limit R → ∞ in the region g < gc. By fitting Ns = C(gc − g)−ν , we get the critical point gc ≃ 1.351 and a critical
exponent ν ≃ 1.092, the error bar is 1 S.D. from fitting. (d) The scaling behavior near the numerically calculated critical point
gc = 1.351, which fits a slope of 0.531 in the log-log plot.

Experimental investigation

In order to see clear phonon number scaling with finite frequency ratio, we fix the coupling strength g = 1.5 and try
to observe the average phonon number at different frequency ratio just like the result in Fig. S1(b). In order to have
sufficiently large ratio R and experimentally feasible sideband Rabi rate ΩSB (in our current condition, ΩSB need to be
smaller than 2π×20 kHz due to the laser intensity limitation) at g = 1.5, the δb−δr need to be as small as possible. On
the other hand, the precision of the parameter calibration is around 100Hz. Thus we fix δb− δr = 1kHz as a tradeoff,
resulting in the required Rabi rate ΩSB = 2π × 7.5, 10.6, 13.0, 15.0 kHz at R = 100, 200, 300, 400, respectively with
around 10% relative erorr in R. The result is shown in Fig. S2. We fit the experimental data with a linear line under
the log-log scale shown as a blue line in the figure. The orange shaded region represents 0.95 confidence level (2 S.D.)
band and the extracted slope of the blue line is 0.707± 0.148 (2 S.D.). The green line is calculated from the numerical
simulation and the slope is around 0.843. We can see the experimentally extracted slope is smaller than the numerical
result but is still reasonable considering relatively large error of the ratios. A more precise extraction of the critical
exponent is limited by the current experimental noise. We need to further reduce the fluctuation of the experimental
parameters such as the trap frequency, laser intensity etc. towards an observation of critical phenomena under this
model.

NUMERICAL SIMULATION WITH SMALL RATIO INCREMENT

As the ratio increment is large enough, as shown in Fig. S1 the trend of the phonon number near the critical point
shows a good phase transition behavior. However, in this dissipative phase transition model, we find that as the
increment of ratio is small, the phonon number of the steady state has a small ”back and forth” behavior, and shows
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FIG. S2: Average phonon number scaling. The red dots are exprimental results with vertical error bars representing 1
S.D. and horizontal error bars estimated from calibration uncertainty. The blue line is a fitting result with the orange shaded
region representing 0.95 confidence level (2 S.D.) band. The green line is from numerical simulation whose slope is around
0.843 representing the critical exponent.

a nonmonotonic behavior. In our simulation, we take two different series of the ratios, i.e. (300, 325, 350, 375, 400)
and (500, 525, 550, 575, 600). We plot the steady state phonon number versus the dimensionless coupling coefficient g
in two different regimes. The first regime is near the critical point, where gs are taken from 1.0 to 1.4. In this regime,
as we increase the ratio with a small value (25), the steady state phonon number exhibits a small ”back and forth”
behavior as shown in Fig. S3 (a), (b). As the dimensionless coupling coefficient is far beyond the critical point (the
second observation regime), the trend of the phonon number becomes monotonic, and no ”back and forth” behavior
is observed. Hence, although a small increment in the ratio may lead to a small ”back and forth” behavior in the
phonon number, the overall trend of our model still shows a clear phase transition.

NUMERICAL SIMULATION WITH NOISE

We further consider the decoherence effect in the numerical simulation. This can be simulated by invoking the
Lindblad superoperator L[Ô]ρ̂ ≡ Ôρ̂Ô† − Ô†Ôρ̂/2− ρ̂Ô†Ô/2. For motional heating and dephasing, the superoperator
is L[

√
γnthâ

†] + L[
√
γ(nth + 1)â] and L[

√
2Γmâ†â] respectively [1], where γnth is the heating rate and Γm is the

dephasing rate. In our measurement, the motional dephasing rate Γm is around 200 s−1, the heating rate is below
50 s−1. It is not necessary to consider the effect of the spin dephasing because the duration (≈ 20µs) between the
two spin resets is much smaller than the spin dephasing time of our system (≈ 50ms).

Besides, we consider another heating effect caused by the photon recoil from the optical pumping. Note that only
when the ion is in the spin up state (i.e. the bright state) will it absorb photons. Hence the number of photons being
absorbed by an ion is Nb = Np × P↑, where Np indicates the average number of photons being absorbed by an ion
during the optical pumping (in 171Yb+ , Np = 3), and P↑ is the population of the spin up state. The heating energy
of the ion for each pumping step roughly equals to the recoil energy of the photons, which increases one of the three
motional modes phonon number by (Nbℏk)2

2m×3ωm
with the photon wavevector k, the ion mass m and the motional mode

frequency ωm.
As shown in Fig. S4, the solid, dashed and dot-dashed lines are the simulation results of the variation of average

phonon number versus the coupling strenghth g, without any noise effect, with only the decoherence effect and with
both the decoherence and recoil effect, respectively. We can see the phonon number is slightly larger after considering
the decoherence and recoil effect which is consistent with intuition.

[1] Q. A. Turchette, C. J. Myatt, B. E. King, C. A. Sackett, D. Kielpinski, W. M. Itano, C. Monroe, and D. J. Wineland,
“Decoherence and decay of motional quantum states of a trapped atom coupled to engineered reservoirs,” Phys. Rev. A 62,
053807 (2000)

http://dx.doi.org/ 10.1103/PhysRevA.62.053807
http://dx.doi.org/ 10.1103/PhysRevA.62.053807
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FIG. S3: The trend with small ratio increment. We plot the steady state phonon number with respect to different
dimensionless coupling g with a small ratio increment 25 from 300 to 400 in (a), (c) and 500 to 600 in (b), (d). (a) and (b)
show the trend in the near-critical-point regime. (c) and (d) show the trend far beyond the critical point.

FIG. S4: Numerical simulation with/without noise effect. The solid, dashed and dot-dashed lines are the simulation
results of the variation of average phonon number versus the coupling strength g, without any noise effect, with only the
decoherence effect and with both the decoherence and recoil effect, respectively. It’s obvious that the phonon number is slightly
larger after considering the decoherence effect and recoil effect.
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