Supplementary Materials for

Large Room-Temperature Magnetoresistance in van der Waals

Ferromagnet/Semiconductor Junctions

Wenkai Zhu^{1,2,†}, Shihong Xie^{1,3,†}, Hailong Lin^{1,2,†}, Gaojie Zhang^{4,5}, Hao Wu^{4,5}, Tiangui Hu^{1,2}, Ziao Wang^{1,2}, Xiaomin Zhang^{1,2}, Jiahan Xu¹, Yujing Wang^{1,2}, Yuanhui Zheng¹, Faguang Yan¹, Jing Zhang¹, Lixia Zhao^{1,6}, Amalia Patan è³, Jia Zhang^{5,7}, Haixin Chang^{4,5,*}, and Kaiyou Wang^{1,2,*}

¹State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China

²Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

³School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom

⁴Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

⁵Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China

⁶School of Electrical and Electronic Engineering, Tiangong University, Tianjin 300387, China

⁷School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China

[†]These authors contributed equally to this work.

*Authors to whom any correspondence should be addressed.

Email:

hxchang@hust.edu.cn

kywang@semi.ac.cn

Supplementary Note 1: Methods

Materials and device fabrication. The high-quality vdW bulk single-crystal WSe₂ and hBN were purchased from HQ Graphene, while Fe₃GaTe₂ was grown by the self-flux methods. To fabricate a Fe₃GaTe₂/WSe₂/Fe₃GaTe₂ MTJ, a Fe₃GaTe₂ flake was firstly exfoliated onto polydimethylsiloxane (PDMS) stamps by adhesive tape. Under an optical microscope, the Fe₃GaTe₂ flake with appropriate thickness and shape was chosen for transfer onto a 300 nm thick SiO₂/Si by using a position-controllable dry transfer method. Then, using the same method, a WSe₂ flake was transferred onto the Fe₃GaTe₂ flake, followed by another thicker Fe₃GaTe₂ flake to fabricate a vdW heterojunction. To prevent the Fe₃GaTe₂ from oxidation, a hBN layer was used to cap the whole heterostructure. Finally, the device was annealed at 120 °C for 10 minutes to reduce the bubbles between the layers and ensure close contact between the layers. Notably, the whole transfer processes were performed in a nitrogen-filled glovebox with a concentration of less than 0.1 ppm of oxygen and water to ensure a clean interface. The source and drain electrode regions were pre-patterned by standard photolithography, and Cr/Au (10/40 nm) layers were deposited using an ultrahigh vacuum magnetron sputtering system, followed by a lift-off process. By a similar process, a Fe₃GaTe₂/hBN heterostructure was stamped onto four pre-patterned Cr/Au (10/15 nm) electrodes on a 300 nm thick SiO₂/Si substrate to form a Hall-bar device. The electrodes of the Hall-bar device were patterned by standard electron beam lithography (EBL) and an ultrahigh vacuum magnetron sputtering, followed by a lift-off process.

Electrical, optical and microscopy measurements. The electrical measurements were carried out in a Model CRX-VF Cryogenic Probe Station (Lake Shore Cryotronics, Inc.) with a ± 2.25 T out-of-plane perpendicular magnetic field. The instrument operation temperature varies from 10 to 400 K. The AHE was measured by the combination of Keithley model 2602B sourcemeter and Keithley model 2182 A nanovoltmeter. The electrical transport

properties of MTJs were measured by a semiconductor characterization system (Agilent Technology B1500A). The thickness of Fe₃GaTe₂ and WSe₂ flakes were determined by an AFM (Bruker Multimode 8). The Fe₃GaTe₂/WSe₂/Fe₃GaTe₂ device optical image was obtained using an Olympus optical microscope. Raman and photoluminescence spectra of WSe₂ and Fe₃GaTe₂ flakes were obtained by optical microscopy (Renishaw inVia-Reflex) with excitation by a 532 nm laser.

Figure S1: (a) The optical image of a thick (40 nm) Fe₃GaTe₂ Hall-bar device capped by hBN. Scale bar: 10 μ m. The direction of the current and the connection of the voltmeter are shown in red. (b) Longitudinal resistance R_{xx} versus temperature from 10 to 380 K. Upper-left inset: AFM image and height profile of the Fe₃GaTe₂ Hall-bar device. Scale bar: 10 μ m. (c) Hall resistance R_{xy} versus perpendicular magnetic field (*B*) at different temperatures ranging from 10 to 380 K. The bias current I_{xx} is fixed at 10 μ A.

Figure S2: (a) Raman spectrum of a bulk Fe₃GaTe₂ flake (T = 300 K, $\lambda = 532$ nm). (b) Raman spectrum of a bulk WSe₂ flake (T = 300 K, $\lambda = 532$ nm). (c) Photoluminescence (PL) spectrum of a bulk WSe₂ flake (T = 300 K, $\lambda = 532$ nm). The spectrum shows the band edge emission of WSe₂, which is centred at about 1.38 eV.

Figure S3: (a) Optical image and AFM image (upper right inset) of another $Fe_3GaTe_2/WSe_2/Fe_3GaTe_2$ MTJ device with a thin (5 nm) spacer layer. Scale bar: 10 µm. Lower-left inset: the height profile of the spacer layer WSe₂. (b) *I-V* characteristics of the device at *T* = 300 K. (c) Room temperature *R* and TMR versus *B* at 10 mV bias.

Supplementary Note 2: Temperature-dependent TMR of another device

Figures S4a-b show the TMR curves of another device measured at various temperatures. An extremely large TMR of 210% in the device is observed at T = 10 K. Same as the device in the main text, the magnitude of the TMR decreases and vanishes above $T_{\rm C}$ with increasing temperature (Fig. S4c). Interestingly, the TMR of this device (210%, 10K) is

larger than that of the device in the main text (164%, 10K) at a low temperature, but the TMR of this device (53%, 300K) is smaller than that of the device in the main text (85%, 300K) at room temperature, which indicates that the TMR of this device decays more significantly with increasing temperature. This is caused by the difference in $T_{\rm C}$ of Fe₃GeTe₂ between the two devices. Fitted by power-law $P = P_0(1-T/T_{\rm C})^{\beta}$ (Fig. S4d), we get a $T_{\rm C} = 357$ K of Fe₃GeTe₂ in this device, which is lower than that of the device in the main text ($T_{\rm C} = 400$ K). From the literature [S1], we know that the $T_{\rm C}$ of Fe₃GeTe₂ decreases monotonically with decreasing thickness. Thinner Fe₃GeTe₂ layers (~8nm bottom layer and ~9nm top layer) in this device lead to a lower $T_{\rm C}$, resulting in a smaller TMR at room temperature.

Figure S4: (a-b) TMR versus *B* of another device at different temperatures ranging from 10 to 380 K. (c) TMR versus temperature of the device at V = 10 mV. The values of TMR are obtained from parts (a-b). (d) Spin polarization (*P*) versus temperature of the device. The fitting curve follows the form of $P = P_0(1-T/T_C)^{\beta}$.

Reference

[S1]Zhang G, Guo F, Wu H, Wen X, Yang L, Jin W, Zhang W and Chang H 2022 Nat. Commun. 13 5067