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I. SAMPLING USING AUTOREGRESSIVE
NETWORKS

For a well-trained autoregressive network, it’s direct
to sample configurations from it, while the unavoidable
numerically non-zero loss implies that the samples fol-
low a distribution qθ(s) which approximates but is not
exactly the same as p(s). To reach unbiased estimations
of the thermodynamic observables, we adopt the impor-
tance sampling(IS) approach [1, 2], and constructs an
unbiased estimator for each observable O(s) as follow-
ing,

⟨O⟩ ≃
∑

s∼qθ(s)

O(s)w(s), (1)

where the weight is w(s) = (p(s)/qθ(s))/A with a nor-
malization factor A =

∑
s∼qθ(s)

p(s)/qθ(s), and the con-

figurations {s} sampled from the trained autoregressive
network are following qθ(s) which can be well evalu-
ated. The above importance sampling corrected estima-
tor can be directly derived by inserting the reference dis-
tribution of qθ(s) into the evaluation of the observable,
⟨O⟩ =

∫
O(s)(p(s)/qθ(s))qθ(s)ds.

After insertion the estimation can be viewed as a
weighted integration with respect to qθ(s), and the inte-
gral can naturally be evaluated with the summation of all
weighted observables as Eq.(1) shown. In the main text,
we denote calculations from the CANs together with im-
portance sampling to be “CANs-IS”, while use “CANs”
to denote calculations with direct sampling purely from
CANs.

II. TRAINING AND PARAMETER SET-UPS

Before more detailed comparisons, the information on
the training process should be added here. We adopt the
Adam algorithm as the optimizer with parameters ϵ =
10−8, β1 = 0.5, β2 = 0.999. The initial learning rate is set
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as η = 10−3 and adjusts in ReduceLROnPlateau scheme.
Besides, the annealing strategy for inverse temperature
was also adopt with a rate of 0.998 at step-t, βt = β ∗
(1−0.998t). The gradient clip was also applied to prevent
exploding gradients. The stopping condition should be
when variational free energy is converging, but in our
practical computations, they all converge before epoch=
10, 000. Thus, we trained the CANs at different inverse
temperatures with 10,000 steps.

The advantage of the variational CANs is that the free
energy per site can be directly estimated. It is presented
Fig. 1 for three different lattice sizes, L = 4, 8, 16. The
results for L = 8 and L = 16 indicate that the free en-
ergy converges rapidly with increasing lattice sizes, which
ensures that the size effect can be avoided.
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FIG. 1: The variational free energy Fθ per site on a square
lattice from CANs.

For the MCMC calculations mentioned in the main
text, the equilibration steps is set to be 50,000 for one
Markov Chain, and the production steps is 50,000,000
from where we take sample per 10,000 steps. We adopt
the classical Metropolis-Hastings algorithm to update the
configurations which means the proposal for each step
is that randomly rotating all spins iteratively, see more
details in Refs [3, 4].
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TABLE I: The energy and the number of free vortices (or
anti-vortices) per site extracted from CANs and MCMC. The
results from CANs are obtained from an ensemble average
with 1000 configurations.

β 0.4 0.6 0.8 1.0 1.2

Energy
MCMC -0.424 -0.682 -0.996 -1.336 -1.502
CANs(2) -0.231 -0.585 -1.165 -1.395 -1.513
CANs -0.386 -0.589 -1.037 -1.358 -1.496

CANs+IS -0.423 -0.672 -1.022 -1.387 -1.518

Vortices
MCMC 0.114 0.080 0.042 0.010 0.002
CANs(2) 0.138 0.087 0.012 0.001 0.000
CANs 0.121 0.094 0.033 0.005 0.001

CANs+IS 0.114 0.081 0.040 0.008 0.002
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