Supplemental Material

Modulated Collective Motions and Condensation of Bacteria

Mei-Mei Bao(鲍美美)^{1†}, Isaiah Eze Igwe^{2†}, Kang Chen(陈康)^{1*}, and Tian-Hui

Zhang(张天辉)1*

¹Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, China

² Department of Physics, Federal University Dutsin-Ma, Katsina State 821101, Nigeria

Description of movies

Movie 1. Condensed phase at $E=0.03 \text{ V/}\mu\text{m}$, f=20 Hz. At frequencies between $1.0\sim100 \text{ Hz}$, the system separates into two coexisting phases: a dense phase and a spare phase. The field of view is $120\times90~\mu\text{m}^2$. The rate of movie is 10 frames per second. Scale bar: $20~\mu\text{m}$.

Movie 2. Formation of clusters at E=0.035 V/ μ m, f=0.2 Hz. The field of view is $120 \times 90 \ \mu$ m². The rate of movie is 10 frames per second. Scale bar: $20 \ \mu$ m.

Movie 3. Merging of clusters at E=0.035 V/ μ m, f=0.5 Hz. The field of view is 80×60 μ m². The rate of movie is 10 frames per second. Scale bar: 20 μ m.

Movie 4. Splitting of clusters at E=0.035 V/ μ m, f=0.2 Hz. The field of view is $120 \times 90 \ \mu\text{m}^2$. The rate of movie is 10 frames per second. Scale bar: $20 \ \mu\text{m}$.

Movie 5. Steady clusters oscillating and no ordered structure at E=0.035 V/ μ m, f=0.45 Hz. The field of view is 96×72 μ m². The rate of movie is 10 frames per second. Scale bar: 20 μ m.

Movie 6. Colloidal clusters with merging and splitting at E=0.035 V/ μ m, f=0.3 Hz. The field of view is 200 × 150 μ m². The rate of movie is 10 frames per second. Scale bar: 20 μ m.

Movie 7. The motion of individual bacteria at E=0.03 V/ μ m, f=0.3 Hz. The field of view is $100 \times 75 \ \mu$ m². The rate of movie is 10 frames per second. Scale bar: 20 μ m.

Movie 8. The motion of individual colloid particle at $E=0.03 \text{ V/}\mu\text{m}$, f=0.3 Hz. The field of view is $100 \times 75 \mu\text{m}^2$. The rate of movie is 10 frames per second. Scale bar: $20 \mu\text{m}$.

Movie 9. Growth and splitting at $E=0.035 \text{ V/}\mu\text{m}$, f=0.5 Hz. The field of view is 80×60 μm^2 . The rate of movie is 10 frames per second. Scale bar: $20 \mu\text{m}$.

Movie 10. Controlled splitting when frequency is tuned from 0.3 Hz directly to 0.6 Hz, E=0.035 V/ μ m. The field of view is $116 \times 87 \ \mu m^2$. The rate of movie is 10 frames per second. Scale bar: 20 μ m.