Supplemental Material: In-plane anisotropic response to the uniaxial pressure in the hidden order state of $URu₂Si₂$

Xingyu Wang, 1,2 Dongliang Gong, ¹ Bo Liu, ^{1, 2} Xiaoyan Ma, ^{1, 2} Jinyu Zhao, ^{1, 2}

Pengyu Wang,^{1,2} Yutao Sheng,^{1,2} Jing Guo,^{1,3} Liling Sun,^{1,2,3} Wen Zhang,^{4,5}

Xinchun Lai,⁵ Shiyong Tan,^{5,*} Yi-feng Yang,^{1,2,3,†} and Shiliang Li^{1,2,3,‡}

¹ Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China ² School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China ³Songshan Lake Materials Laboratory , Dongguan, Guangdong 523808, China ⁴State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang, Sichuan 621010, P. R. China ⁵Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang 621908, China

FIG. S1. (a)-(d) Temperature dependence of resistance for $x = 0.2$ and 0 along the (100) and (110) directions. The solid lines are fitted results by Eq. (1). (e)-(h) Temperature dependence of ζ for x $= 0.2$ and 0 along the (100) and (110) directions. The solid lines are calculated results by Eq. (2).

I. CALCULATING THE ELASTORESISTIVITY BASED ON THE GAP FUNC-**TIONS**

In the manuscript, we have shown that the temperature dependence of the elastoresistivity ζ above T_0 in the URu_{2−x}Fe_xSi₂ system can be simply explained as the uniaxial-pressure effect on an energy scale, which is most likely T^* . This scenario can be also applied below T_0 except for the $x = 0$ sample along the (110) direction. Since the temperature dependence of the resistivity has long been known to be described by some gap functions $[1, 2]$, the energy scale should be associated with the gap. Here we take a simple form as follows [1],

$$
\rho = \rho_0 + AT^2 + \frac{BT}{\Delta}(1 + \frac{2T}{\Delta})e^{-\frac{\Delta}{T}},
$$
\n(1)

where Δ is the gap associated with the HO transition. It is reasonable to assume that the application of pressure changes Δ as $\Delta \approx \Delta_0 + \kappa p$ when the pressure is small. Therefore, the resistivity change under pressure is proportional to $d\rho/d\Delta$, which is

$$
\frac{d\rho}{d\Delta} = -\frac{B}{\Delta} \left(1 + \frac{3T}{\Delta} + \frac{4T^2}{\Delta^2} \right) e^{-\frac{\Delta}{T}}.\tag{2}
$$

We can thus fit the temperature dependence of the resistance below T_0 with Eq. (1) [Fig. S1(a)-S1(d)] and calculate $dR/d\Delta$ according to Eq. (2). It is clear that the calculated

[∗] tanshiyong@caep.cn

[†] yifeng@iphy.ac.cn

[‡] slli@iphy.ac.cn

results match the measured ζ well for all the samples except the $x = 0$ sample along the (110) direction.

FIG. S2. Comparison between $-\zeta$ and dR/dT for (a) $x = 0.2$ and p // (100), (b) $x = 0.2$ and p // (110), (c) $x = 0$ and p // (100), and (d) $x = 0$ and p // (110).

II. COMPARISON BETWEEN ζ AND dR/dT

We have pointed it out in the manuscript that the temperature dependence of ζ and dR/dT are very similar. Fig. S2 shows the comparison between $-\zeta$ and dR/dT for all the samples. Again, all of them match well expcet for the $x = 0$ sample along the (110) direction below T_0 .

^[2] S. Ran, C. T. Wolowiec, I. Jeon, N. Pouse, N. Kanchanavatee, B. D. White, K. Huang, D. Martien, T. DaPron, D. Snow, M. Williamsen, S. Spagna, P. S. Riseborough, and M. B. Maple, Phase diagram and thermal expansion measurements on the system $\text{URu}_{2-x}\text{Fe}_x\text{Si}_2$, Proc. Natl. Acad. Sci. U.S.A 113, 13348 (2016).