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In this supplemental material, we provide more details about our recognition scheme based on the variations
of entanglement entropy. We show the variations of entanglement entropy and the average given several spe-
cific samples in the MNIST and fashion-MNIST datasets. How the bond dimensions affect the variations of
entanglement entropy is also demonstrated from an concrete example. The classification accuracies using just
the selected features are compared between our scheme and the discriminative matrix product state method.
By generalizing to the multi-qubit measurement, we show that our method can recognize single-pixel noises
unsupervisedly. The feature selection by training the MPS with the samples from multiple classes are also
discussed.

I. VARIATIONS OF ENTANGLEMENT ENTROPY BY
MEASUREMENT

In Fig. 1, we show how the entanglement entropy (EE)
varies after measuring on a specific qubit. The first col-
umn shows four images taken from the MNIST and fashion-
MNIST datasets as examples. We evaluate ⟨δS⟩m′ (m′ =
0, . . . ,M ) by Eq. (A2) according to these images, respec-
tively, and find the pixels with the algebraically smallest and
largest variations mmin = argminm′⟨δS⟩m′ and mmax =

FIG. 1. (Color online) Four images from the MNIST and fashion-
MNIST datasets (first column), and the variations of the entangle-
ment entropy dSm = S′

m − Sm by taking m = argminm′⟨δS⟩m′

(second column) and argmaxm′⟨δS⟩m′ (third column). The green
symbols with dash line show the positions of the measure qubits.
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argmaxm′⟨δS⟩m′ . The corresponding variations of EE
(dSm = S′

m − Sm) are demonstrated in the second and third
columns, respectively. The position of the measured qubit is
marked by a green symbol with dash line.

For the considered datasets, we have ⟨δS⟩mmin < 0. Com-
paring with the EE of the MPS (see, e.g., Fig.4 in the main
text), the measurement on this qubit according to the value
of the corresponding pixel will reduce the EE in the informa-
tive area. Remind that the informative area is defined by the
pixels with large EE from the unmeasured MPS. Meanwhile,
we also obverse certain positive variations that tend to locate
at the edges of the informative area. By measuring on the
mmax-th qubit, the qubits whose EE increases in general tend
to locate at the edges of the informative area.

II. BENCHMARK ON TESTING SET

Our scheme can be generalized to recognize the informa-
tive features and critical minorities of the samples that the
generative TN has not learnt, e.g., those in the testing set.
Fig. 2 show six testing images from the MNIST and fashion-
MNIST datasets as the examples to show the ⟨δS⟩m′ by im-
plementing measurements. Be aware that we do not have any
prior information on labeling the pixels even for the training
set. The ⟨δS⟩m′ can be considered as the labels of the pixels
that characterize importance to the given sample. By eyes one
could recognize the distinct shapes in the testing images from
⟨δS⟩m′ .

III. ROBUSTNESS WITH DIFFERENT
HYPER-PARAMETERS

The recognition of the informative features by the EE vari-
ations is robust to the changes the values of hyper-parameters.
We generalize the feature map given in Eq. (A1) to the follow-
ing form, where the s-th element of the vector v from a given
feature x satisfies
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FIG. 2. (Color online) Six samples from the testing set of MNIST
and fashion-MNIST datasets and the average variations of EE.

with
(
d−1
s−1

)
the combination number and dim(v) = d that is

also the dimension of the physical indexes of the MPS. By
taking d = 2 and θ = 0.5, Eq. (1) is reduced to the feature
map in Eq. (A1). We choose θ = 0.5 in the main text since
the classifier formed by the generative MPS’s gives the highest
classification accuracy [1].

In Fig. 3, we show the average variations of EE (⟨δS⟩m′)
from a same image of shoe by taking different values of χ
(the dimension of the virtual indexes), d and θ. In all cases, the
distinct shapes at different parts of the shoe is well presented
by ⟨δS⟩m′ with slight differences. For instance , the strips of
the shoe can be seen clearly with χ = 2, d = 2, and θ = 0.5
(top-middle of Fig. 3), and the back counter is clearly captured
with χ = 32, d = 2, and θ = 1. In all cases, the sole and the
topline are well presented. Ba aware that such distinct shapes
of this specific image cannot be seen by the EE of the MPS,
which is sample independent.

IV. ENTANGLEMENT ENTROPY FOR FEATURE
SELECTION

The EE of the MPS can be utilized for feature selec-
tion. Following the idea of the generative MPS classification
scheme proposed in Ref. [1], we take the MNIST as example
and train a generative MPS for each of the classes. The classi-
fication is implemented by comparing the fidelity (a measure
of similarity between two quantum states) between the prod-
uct state [Eq. (A1)] from a target sample and the MPS’s. For
each MPS, we retain Mf < M (note M is the total number
of features in one sample) features whose qubits possess the
largest EE. Fig. 4 shows the testing accuracy versus Mf with
χ = 4, 8, 16, and 32. By repeating ten times of simulations
with a randomly initialized MPS, the thickness of the lines
shows the variances that are insignificant.

Our accuracy surpasses that of the feature selection method
proposed in Ref. [2] that is based on the EE of the discrimina-
tive MPS [3]. In the discriminative MPS approach, one trains
an MPS that contains M physical indexes and an additional

FIG. 3. (Color online) We take one specific image of shoe as an ex-
ample (top-left) and show the variations of EE with different values
of χ, d, and θ.

FIG. 4. (Color online) Testing accuracy Γ versus the number of fea-
tures Mf selected according to the EE. The solid symbols with lines
show the accuracy of the generative MPS’s with χ = 4, 8, 16, and
32. The thickness of the lines illustrates the variance evaluated by
repeating the simulations for ten times. The purple hollow diamonds
show the accuracy of the feature selection approach based on the dis-
criminative MPS approach [2].

D-dimensional label index (with D the number of classes).
The Mf features with the largest EE evaluated from the dis-
criminative MPS are retained. Our method with the generative
MPS classification scheme demonstrated obvious advantage
for about 100 < Mf < 300 and for the few-shot cases around
Mf ≃ 10.
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FIG. 5. (Color online) (a) An example in the noisy strip dataset. (b)-
(e) The average variation of EE ⟨δS⟩m′ with different numbers (6,
18, 180, and 540, respectively) of noisy training samples. The noises
can be better excluded from the critical minority with more training
samples.

V. GENERALIZING TO MULTI-QUBIT MEASUREMENTS
TO DEAL WITH SINGLE-PIXEL NOISES

From the definition of the EE variations, the EE of each
qubit is solely determined by the value of the corresponding
pixel and the MPS, thus mathematically cannot distinguish the
noises. In Fig. 5, we show that by applying the multi-qubit
measurements, the single-pixel noises can be excluded from
the critical minority. Fig. 5 (a) shows an example of the noisy
strip dataset to test to the recognition of noises. By choosing
K > 1 qubits numbered as {mk} (k = 1, . . . ,K) , the K-
qubit measurement on these qubits are defined as

Φs1... =
1

Z

∑
sm1

...smK

Ψs1...

∏
m′∈{mk}

v[m
′]

sm′ , (2)

where the state after the measurement Φ contains all the in-
dexes of Ψ but the summed ones, and Z = |Φ| the normal-
ization factor. One can see that the K-qubit measurement is a
natural generalization of the single-qubit measurement given
in Eq. (2). As an example, we for each time measure(3 × 3)
neighboring qubits demonstrated by the blue dash squares.
The average variations of EE ⟨δS⟩m′ after the measurement
are shown in Fig. 5 (b)-(e), where m′ denotes the numbering
of the (3×3) square for the measurement. The MPS is trained
by 6, 18, 180, and 540 noisy samples, respectively. When the
number of training samples is small, the noisy pixels in the
background can be well excluded. But the ⟨δS⟩m′ in the in-
formative area show certain “fluctuations”. When the number
of training samples increases, our method can better select the
informative features in all areas.

VI. RANDOMLY INITIALIZED MPS CANNOT SELECT
IMPORT FEATURES

We calculate the variations of EE obtained from a randomly
initialized MPS, where each tensor element is generated by
the Gaussian distribution N (0, 1). Fig. 6 shows the variations
of EE obtained from this MPS. It is obvious that the important

FIG. 6. (Color online) The first row presents four images from the
MNIST dataset. The second row shows the variations of EE, which
fail to select the important features.

features cannot be successfully selected by the variations of
EE.

VII. FEATURE SELECTION BY THE MPS TRAINED BY
MULTI-CLASS DATA

FIG. 7. (Color online) We take three images as examples (the left-
most column) and show the variations of EE ⟨δS⟩m′ for different
bond dimensions χ = 4, 16, 32, 128 by fixing d = 2 and θ = 0.5.

In the main text, each MPS is trained by the samples from
a same class. As a complement, we apply our method to the
multi-class case, where we train an MPS by the samples from
multiple classes. Specifically, we select 100 images from each
class. The trained MPS is used for the feature selection by
following the standard process proposed in the main text. The
results of the EE variations with different virtual bond dimen-
sions χ are shown in Fig. 7.

It can be observed by the naked eyes that one MPS manages
to select the important features for the samples from all the
classes. As χ increases, the importance of features is demon-
strated more clearly. This relates to how well the probability
distribution of the samples is captured by the MPS, which can
be characterized by the negative logarithmic likelihood [4].



4

Appendix A: Formulas in the main text used in the
supplemental material

v[n] =

M∏
⊗m=1

[
cos

(
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[n]
m π

4

)
, sin

(
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[n]
m π

4

)]T
, (A1)

⟨δS⟩m′ =

∑
m ̸=m′ (S′

m − Sm)

M − 1
, (A2)
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