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I. SAMPLE INFORMATION AND EXPERIMENTAL SETUP

Sample and wiring diagram.— The four-qubit superconducting processor used in our experiment, whose parameters
are summarized in Table S1 and Table S2, is composed of four tunable and grounded transmon qubits (It is also known
as Xmon qubits) [1, 2]. We designed nearest-neighbor (N. N.) coupling strength 2Jkl ≃ 40 MHz and next-nearest-
neighbor (N. N. N) interactions ∼ 2Jkl/5. As shown in Fig. S1(b), all transmons include a ’cross’ shape capacitance
to suppress charge noise, which is connected to ground through two Josephson junctions. Therefore, the transmons
manipulation can be adjusted by inductively coupled Z lines and capacitively coupled XY lines. The counterparts of
the above items in the circuit diagram are shown in Fig. S1(a). In addition, a readout resonator, one port coupled
to a transmission line, is introduced to dispersively interact with each transmon. The effective N. N. and N. N. N.
coupling strength can be further tuned by designing a suitable energy level structure according to the function of flux
bias for the transition frequencies between |0⟩ and |1⟩ of four qubits, as shown in Fig. S2. The sample is fabricated
with the following procedures:

(i) Clean a c-plane sapphire wafer by using the UV Ozone cleaner.
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TABLE S1. Device parameters.

TQ1 TQ2 TQ3 TQ4

ωq/2π
a (GHz) 4.65217 (3.92158) 3.72558 (3.72558) 4.56861 (3.47061) 3.69262 (3.62361)

ωr/2π
b (GHz) 7.03038 7.08266 7.12667 7.16385

κr/2π
c (kHz) 39 161 32 65

χr/2π
d (kHz) 41 26 32 27

Jr,q/2π
e (MHz) 44.7 48.2 41.2 51.2

T1
f (µs) 45.6 39.0 41.8 31.5

T ∗
2

h (µs) 1.58 1.10 0.97 1.02
a Transition frequency |0⟩ → |1⟩ at the sweet spot (working point).
b Readout resonator frequency.
c Readout resonator intrinsic loss rate.
d Effective dispersive shift for the |0⟩ → |1⟩ transition due to the interaction with the readout cavity mode.
e Capacitively coupling strength between transmon and readout resonator derived by the dispersive shift [1].
f Energy decay time (T1) measured at the working point.
h Ramsey decay time (T ∗

2 ) measured at the working point.

(ii) Deposit about 100 nm aluminum on the sapphire by electron beam evaporation.
(iii) Define the large features of the processor by photolithography and wet etch, which include a transmission line,

readout resonators, flux lines, and pads of the transmons.
(iv) Use the e-beam lithography technique, which realizes the strongly asymmetric controlled undercut structures

by using a bilayer resist (MMA-MAA EL11 and PMMA A4) and protective coating(AR-PC 5090.02), to define the
Josephson junctions.

(v) Apply double-angle evaporation technique [3] to define the Al/AlO(x)/Al junctions.
(vi) Introduce the airbridge to suppress the flux and drive crosstalk [4], with the process as follows: pattern and

reflow the photoresist, deposit at least 400 nm aluminum, define the bridge using photolithography, and wet etch the
excess aluminum.

(vii) And finally, package the processor after lift-off.
The diagram of the measurement setup is shown in Fig. S1(c). In our experiment, we use the Z lines to modulate

the frequencies of transmons, the Probe and Output lines to readout quantum states, and the XY drive lines to
initialize and manipulate quantum states, respectively. All input signals (including the Probe signal) are generated in
the room-temperature electronic part (translucent red) and then sent to the processor after appropriate attenuation
and isolation in the cryogenic part (translucent turquoise) as shown in the diagram, respectively. The Output signal
is amplified by a high-electron-mobility-transistor (HEMT) at 4 Kelvin stage in the dilution refrigerator and two low
noise amplifiers at room temperature, and finally, the IQ mixer is used to demodulate it into an IF signal, which is
collected by ADCs.

Circuit quantization.— As shown in Fig. S1(a), in our system based on circuit analysis [1, 5], the Lagrangian can
be written as

L = T − U (S1)

with

T =
∑
k

1

2
CkΦ̇

2
k +

∑
kl

1

2
Ckl(Φ̇k − Φ̇l)

2 =
1

2
Φ̇TCΦ̇, (S2)

U= −
∑
k

EJk
cos(Φk), (S3)

where qubits denote as k ∈ {1, 2, 3, 4}, kl ∈ {12, 23, 34, 41}, the flux is Φ = [Φ1,Φ2,Φ3,Φ4], and the four-by-four
capacitance matrix C is

C =



C1 + C12 + C13 + C41 −C12 −C13 −C41

−C12 C12 + C2 + C34 + C24 −C34 −C24

−C13 −C34 C13 + C34 + C3 + C34 −C34

−C41 −C24 −C34 C41 + C24 + C34 + C4


. (S4)
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FIG. S1. Sample and measuremental setup. (a) A circuit diagram of the four-qubit processor. They are labeled as
TQ1, TQ2, TQ3, TQ4, respectively. (b) Full image of the quantum processor which contains four transmons. (c) Experimental
diagram for quantum control and readout. The microwave waveforms for XY control and probe are produced by up-conversion
technique. The details include generating a local carrier from microwave source, manipulating intermediate frequency (IF)
signals by using arbitrary waveform generator (AWG), and then synthesizing the controllable waveforms by using IQ mixer.
For Z control, the static flux bias signals and longitudinal parametric pulses are directly generated by Keysight-M3202A. In
order to achieve cryogenic quantum control and probe, all signals are attenuated and filtered before sent into the quantum
chip through corresponding lines. For readout, the output signal passes through two circulators and then is filtered after the
probe signal with quantum state information comes out of the chip. Next, it is amplified by a high-electron-mobility-transistor
(HEMT) at low temperature, and is amplified again by low noise amplifiers after coming out of the fridge to increase signal
noise ratio (SNR). Before digital processing by an ADC channel (ATS-9870), the readout signal is down-converted to IF signals
and the another channel of ATS-9870 board received an IF signal from Keysight-M3202A to provide a reference phase.

By introducing the charge Q = CΦ̇ = [∂L/∂Φ̇1, ∂L/∂Φ̇2, ∂L/∂Φ̇3, ∂L/∂Φ̇4], which is a conjugate variable to the flux
Φ, the classical Hamiltonian H0 can be expressed as

H0 = QΦ̇− L =
1

2
QTC−1Q+ U , (S5)

where C−1 is the inverse capacitance matrix

C−1 =
1

|C|

A11 A12 A13 A41

A12 A22 A34 A24

A13 A34 A33 A34

A41 A24 A34 A44

 , (S6)

with the determinant term

|C| ≈ C1C2C3C4 + C1C2C3C41 + C1C2C4C13 + C1C2C3C24 + C1C2C4C34 + C1C2C3C34 + C1C2C4C34

+ C1C3C4C12 + C1C3C4C34 + C1C3C4C24 + C2C3C4C12 + C2C3C4C13 + C2C3C4C41,
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the diagonal terms

A11 ≈ C2C3C4 + C2C3C41 + C2C4C13 + C3C4C12 + C2C3C24 + C2C4C34 + C3C4C34 + C3C4C24 + C2C3C34 + C2C4C34,

A22 ≈ C1C3C4 + C1C3C41 + C1C4C13 + C3C4C12 + C3C4C13 + C3C4C41 + C1C3C24 + C1C4C34 + C1C3C34 + C1C4C34,

A33 ≈ C1C2C4 + C1C2C41 + C1C4C12 + C2C4C12 + C2C4C13 + C2C4C41 + C1C2C24 + C1C4C34 + C1C4C24 + C1C2C34,

A44 ≈ C1C2C3 + C1C2C13 + C1C3C12 + C2C3C12 + C2C3C13 + C2C3C41 + C1C2C34 + C1C3C34 + C1C3C24 + C1C2C34,

and the non-diagonal terms

A12 ≈ C3C4C12 + C3C12C41 + C4C12C13 + C3C12C24 + C4C12C34 + C4C13C34 + C3C41C24 + C3C12C34 + C4C12C34,

A13 ≈ C2C4C13 + C2C13C41 + C4C12C13 + C2C13C24 + C4C12C34 + C4C13C34 + C4C13C24 + C2C13C34 + C2C41C34,

A41 ≈ C2C3C41 + C2C13C41 + C3C12C41 + C2C41C34 + C3C12C24 + C3C41C34 + C3C41C24 + C2C13C34 + C2C41C34,

A34 ≈ C1C4C34 + C4C12C13 + C1C41C34 + C4C12C34 + C4C13C34 + C4C41C34 + C1C34C24 + C1C34C34 + C1C24C34,

A24 ≈ C1C3C24 + C3C12C41 + C1C13C24 + C3C12C24 + C3C13C24 + C3C41C24 + C1C34C24 + C1C34C34 + C1C24C34,

A34 ≈ C2C13C41 + C1C2C34 + C1C12C34 + C1C34C24 + C2C12C34 + C2C13C34 + C2C41C34 + C1C34C34 + C1C24C34.

After canonical quantization, the Hamiltonian H0 reads

H0 =
4∑

k=1

(4ECk
n2k − EJk

cos(ϕk)) +
∑
kl

4Eklnknl, (S7)

where nk = Qk/2e, ϕk = 2πΦk/Φ0, ECk
= Akke

2/(2|C|), and EJk
, Ekl = Akle

2/|C| are Cooper pair number
operators, reduced flux operators, charging energies, Josephson energies, and coupling energies, respectively, while e
is the electric charge of a single electron.

We rewrite the operators nk = i√
2
(EJk

/8ECk
)1/4(a†k−ak) and ϕk = 1

2 (8ECk
/EJk

)1/4(a†k+ak) to define annihilation
and creation operators a†k, ak. Hence, expanding the cosine in Eq. S7 around ϕk = 0 up to fourth order, and treating
the resulting quartic term in leading order perturbation theory, the Eq. (S7) can be rewritten as

H0 ≃
4∑

k=1

(ℏωka
†
kak − ECk

2
a†ka

†
kakak) +

∑
kl

Jkl(a
†
kal + aka

†
l ), (S8)

where the frequency of the k-th qubit is

ωk ≃ (
√
8ECk

EJk
− ECk

)/ℏ (S9)

and the qubit-qubit coupling strength is Jkl = Ekl√
2

(
EJk

EJl

ECk
ECl

) 1
4 .

Based on circuit quantization, one can obtain the designed parameters of the four-qubit processor in fabrication.
For instance, in our experiment, the ’cross’ shape capacitance in parallel with the Josephson junctions is about 65 fF,
the capacitance between the N. N. qubits is approximately 0.619 fF, and the capacitance between the N. N. N qubits
is about 0.138 fF. Correspondingly, the key parameters ECl

and Jkl we designed and measured are listed in Table S2.

TABLE S2. Paremeters in fabrication

EC1/2π EC2/2π EC3/2π EC4/2π g12/2π g13/2π g41/2π g23/2π g24/2π g34/2π

designed (MHz) 292.1 292.1 292.1 292.1 20.45 5.44 20.37 20.53 4.44 20.45
measured (MHz) 283 – – – 18.8 4.0 17.5 18.0 3.5 16.7

II. REALIZATION OF NON-ABELIAN SYSTEM IN SUPERCONDUCTING CIRCUIT

Longitudinal parametric modulation.— In order to construct a non-Abelian system in our four-qubit system, we
introduce a sinusoidal pulse Φm = Φ̄m + δΦkl cos(∆klt+ φkl) + δΦk′ l′ cos(∆k′ l′ t+ φk′ l′ ) into each modulating qubit
TQm (m = 1, 3 denote the tunable qubits.), where the parking point of the m-th transmon is biased by Φ̄m, and the
amplitudes δΦkl,k′ l′ , the angular frequencies ∆kl,k′ l′ and the phases φkl,k′ l′ can be parametric modulation conveniently



5

TABLE S3. Flux crosstalk

TQ1 TQ2 TQ3 TQ4

TQ1 1. -0.006 -0.009 -0.019
TQ2 0.002 1. -0.02 -0.009
TQ3 0.003 0.019 1. -0.004
TQ4 0.017 -0.001 -0.03 1.

by AWG. Since the qubit frequency ωm nonlinearly depends on the flux modulation according to Eq. (S9) and can
be described by a Taylor series with non-trivial higher-order terms [6], there are terms that can be approximately
expanded as

ωm(t) ≈ωm(Φ̄m) +
∂ωm(Φm)

∂Φm

∣∣∣∣
Φ̄m

[
ωT
kl cos(∆klt+ φkl) + ωT

k′ l′
cos(∆k′ l′ t+ φk′ l′ )

]
+

1

2

∂2ωm(Φm)

∂Φ2
m

∣∣∣∣
Φ̄m

[
ωT
kl cos(∆klt+ φkl) + ωT

k′ l′
cos(∆k′ l′ t+ φk′ l′ )

]2
,

=ωm(Φ̄m) +
1

4

∂2ωm(Φm)

∂Φ2
m

∣∣∣∣
Φ̄m

[
(ωT

k′ l′
)2 + (ωT

kl)
2
]

+
∂ωm(Φm)

∂Φm

∣∣∣∣
Φ̄m

[
ωT
kl cos(∆klt+ φkl) + ωT

k′ l′
cos(∆k′ l′ t+ φk′ l′ )

]
+

1

4

∂2ωm(Φm)

∂Φ2
m

∣∣∣∣
Φ̄m

[
(ωT

kl)
2 cos(2∆klt+ 2φkl) + (ωT

k′ l′
)2 cos(2∆k′ l′ t+ 2φk′ l′ )

]
+

1

2

∂2ωm(Φm)

∂Φ2
m

∣∣∣∣
Φ̄m

ωT
klω

T
k′ l′

[cos((∆kl +∆k′ l′ )t+ φkl + φk′ l′ ) + cos((∆kl −∆k′ l′ )t+ φkl − φk′ l′ )] ,

(S10)

under the parking spot ωm(Φ̄m) that is biased by flux Φ̄m and parked away from the sweet spot. Here, the amplitude
ωT
kl are the 1st-order approximation for the response of the flux modulation amplitude δΦkl in the spectrum of qubit

TQm, frequency ∆kl and phase φkl are the sinusoidal pulse parameters, all of them are required for calibration in
experiment to exquisitely control the coupling term between qubits TQm and its N. N. qubits. After introducing
ℏ = 1, the Eq. (S8) becomes

HL =ω1(t)a
†
1a1 + ω2a

†
2a2 + ω3(t)a

†
3a3 + ω4a

†
4a4

− EC1

2
a†1a

†
1a1a1 −

EC2

2
a†2a

†
2a2a2 −

EC3

2
a†3a

†
3a3a3 −

EC4

2
a†4a

†
4a4a4

+ J12(a
†
1 + a1)(a

†
2 + a2) + J41(a

†
1 + a1)(a

†
4 + a4)

+ J34(a
†
3 + a3)(a

†
2 + a2) + J34(a

†
3 + a3)(a

†
4 + a4).

(S11)

In order to transform HL to interacting picture, a unitary operator U = eiF1(t)a
†
1a1 ⊗ eiω2a

†
2a2 ⊗ eiF3(t)a

†
3a3 ⊗ eiω4a

†
4a4

is introduced with defining functions F1(t) =
∫
ω1(t)dt and F3(t) =

∫
ω3(t)dt. Then, the function Fm(t) can be

approximated by

Fm(t) ≈ωm(t) · t+ ∂ωm(Φm)

∂Φm

∣∣∣∣
Φ̄m

[
ωT
kl

∆kl
sin(∆klt+ φkl) +

ωT
k′ l′

∆k′ l′
sin(∆k′ l′ t+ φk′ l′ )

]

+
1

4

∂2ωm(Φm)

∂Φ2
m

∣∣∣∣
Φ̄m

[
(ωT

kl)
2

2∆kl
sin(2∆klt+ 2φkl) +

(ωT
k′ l′

)2

2∆k′ l′
sin(2∆k′ l′ t+ 2φk′ l′ )

]

+
1

2

∂2ωm(Φm)

∂Φ2
m

∣∣∣∣
Φ̄m

[
ωT
klω

T
k′ l′

∆kl +∆k′ l′
sin [(∆kl +∆k′ l′ )t+ φkl + φk′ l′ ] +

ωT
klω

T
k′ l′

∆kl −∆k′ l′
sin [(∆kl −∆k′ l′ )t+ φkl − φk′ l′ ]

]
.

(S12)

Here, ωm(t) = ωm(Φ̄m) + 1
4
∂2ωm(Φm)

∂Φ2
m

∣∣∣∣
Φ̄m

[
(ωT

k′ l′
)2 + (ωT

kl)
2
]

is the mean frequency of TQm during the longitudinal

parametric modulation. In addition, the parameters φkl,k′ l′ , ∆kl,k′ l′ , and ωT
kl,k′ l′

will slowly vary with time t un-
der the weak parametric modulation fields driving, to meet the condition to measure the quantum geometric ten-
sor based on coherent Rabi oscillations (Details see Section V), ensuring that the modulated frequency ω of the
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(a) (b) (d)

(c) (e)

FIG. S2. Calibrations for the measurement of the quantum geometric tensor. (a) The spectrums of the supercon-
ducting processor. In experiment, the parking points of the fluxing qubits (TQ1 and TQ3) are Φ1 = 0.248Φ0 and Φ3 = 0.297Φ0,
while the static qubits (TQ2 and TQ4) are biased at Φ2 = 0 and Φ4 = 0.088Φ0. (b) and (c) are the calibrations of the corre-
sponding amplitudes δΦ of the longitudinal parametric modulations. (b) and (c) are the effective coupling strength Ω1 and
Ω2 under the different longitudinal parametric modulation amplitudes δΦ.

weak parametric modulation fields in Eq. (S29) meets ω ≪ ∆kl,k′ l′ (t). Therefore, using Jacobi-Anger expansion
eiz sinφ

′
kl =

∑∞
−∞ Jn(z)e

inφ
′
kl , and neglecting the terms which are fast oscillation or about equal to 1 in the expan-

sions [6, 7], the effective Hamiltonian under rotating wave approximation (RWA) can be written as

Hs ≃ (δ12 − δ41)|0001⟩⟨0001|+ (δ23 − δ12)|0010⟩⟨0010|
+ (δ34 − δ23)|0100⟩⟨0100|+ (δ41 − δ23)|1000⟩⟨1000|

+ J12J1(
ωT
12

∆12
)J0(

ωT
41

∆41
)e−iφ′

12 |0010⟩⟨0001|

+ J41J0(
ωT
12

∆12
)J1(

ωT
41

∆41
)e−iφ′

41 |1000⟩⟨0001|

+ J23J1(
ωT
23

∆23
)J0(

ωT
34

∆34
)e−iφ′

23 |0010⟩⟨0100|

+ J34J0(
ωT
23

∆23
)J1(

ωT
34

∆34
)e−iφ′

34 |1000⟩⟨0100|

+ h.c.

(S13)

where Jn is the first kind n-th order Bessel function, and the corresponding parameters are defined as

δ12 = ω1 − ω2 −∆12, φ
′

12 = φ12 − (
ωT
12

∆12
sinφ12 +

ωT
41

∆41
sinφ41),

δ23 = ω3 − ω2 −∆23, φ
′

23 = φ23 − (
ωT
23

∆23
sinφ23 +

ωT
34

∆34
sinφ34),

δ34 = ω3 − ω4 −∆34, φ
′

34 = φ34 − (
ωT
23

∆23
sinφ23 +

ωT
34

∆34
sinφ34),

δ41 = ω1 − ω4 −∆41, φ
′

41 = φ41 − (
ωT
12

∆12
sinφ12 +

ωT
41

∆41
sinφ41).

(S14)

Realization of Non-Abelian system in Superconducting circuit.— According to Eq. (S7), the spectrum of a transmon,
as shown in Fig. S2(a), can be calibrated by adjusting the flux Φ through the Z control line. The crosstalk of flux has
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FIG. S3. (a) Illustration of the diamond shape Hamiltonian in our superconducting circuit. The coupling strength between
each states are labeled as Ω1, Ω2 , Ω3 , and Ω4 respectively. (b) Experimental spectrum of the Eigenstates E±

1,2, while the corre-
sponding Hamiltonian is shown in (a). The frequency in the horizontal axis is replaced by the eigenvalues of Hamiltonian, with
E1 =

√
(Ω2

1 +Ω2
2 +Ω2

3 +Ω2
4)−

√
(Ω2

1 +Ω2
2 +Ω2

3 +Ω2
4)

2 − 4[Ω2
1Ω

2
3 − 2Ω1Ω2Ω3Ω4 cos(φ1 + φ2 + φ3 − φ4) +Ω2

2Ω
2
4 ]/2, E2 =√

(Ω2
1 +Ω2

2 +Ω2
3 +Ω2

4) +
√

(Ω2
1 +Ω2

2 +Ω2
3 +Ω2

4)
2 − 4[Ω2

1Ω
2
3 − 2Ω1Ω2Ω3Ω4 cos(φ1 + φ2 + φ3 − φ4) +Ω2

2Ω
2
4 ]/2, here Ωi is

set as Ω1/2π = Ω2/2π = Ω3/2π = Ω4/2π=2.5MHz, while φ1 = φ2 = φ4 = 0, and φ3 = 0.3π.

been calibrated as shown in Table S3, so that we can independently and accurately manipulate the energy diagram
of each transmon. Therefore, as shown in Fig. 2(a) in main text, the energy diagram used in our experiment can be
constructed by parking the transition frequencies between |0⟩ and |1⟩ at TQ1 = 3.92158 GHz (Φ1 = 0.248Φ0, where
Φ0 is one flux quantum), TQ2 = 3.72558 GHz (Φ2 = 0), TQ3 = 3.47061 GHz (Φ3 = 0.297Φ0), and TQ4 = 3.62361
GHz (Φ4 = 0.088Φ0), respectively. Here, to mitigate the spurious coupling tones, the qubits are parked away from
each other by adjusting the detuning between the N. N. qubits, which is several orders of times larger than the N. N.
N. coupling interactions.

Notice that, at these working points, although the phase decoherence times T ⋆
2 are short, as shown in Table S1,

because we concerned about the Rabi oscillation frequency Ω rather than the occupation of states, this ensures that
more accurate results can be obtained even if the coherence time is relatively short. In addition, the Hilbert space
composed of a set of special quantum states (including |0001⟩, |0010⟩, |0100⟩, and |1000⟩) is an intrinsic decoherence-
free space, which is insensitive to longitudinal noise such as flux noise [8]. That means, for the modulating qubits
(TQ1 and TQ3), we can choose the more conveniently controllable points (Φ1 and Φ3) to facilitate the longitudinal
parametric modulations.

Moreover, based on the above analysis, the parameters in Eq. (S13) can be accurately calibrated with routine
methods. For instance, as shown in Fig. S2(b) and (c), the sinusoidal waveforms of the modulating qubits can
be acquired by spectroscopy measurement. The effective coupling strength as a function of flux under parametric
modulation, as shown in Fig. S2(d) and (e), can be extracted by the oscillation of population between qubits. The
detuning δkl and the phase φ′

kl can be calibrated by Ramsey interference measurement. It is noteworthy that, as
shown in Fig. S2(d) and (e), due to the difference in the amplitude-frequency response in experimental circuits,
the effective coupling strength corresponding to the waveform with different modulating frequencies in calibration
(the points) will be different from the predicted value (the dashed lines) obtained according to Eq. (S12). Compara-
tively, the lines stand by the theoretical predictions with the correction considering the amplitude-frequency response.
Therefore, this difference should be considered in the calibrations. And finally, as show in Fig. S3(a), a diamond
Hamiltonian based on Eq. (S13) can be exquisitely manipulated with the flux parametric modulation pulses Φm.
The modulated terms Ωie

iφi therein correspond to the coupling strength between two transmons in Eq. S13, e.g.
Ω1e

iφ1 = J12J1(
ωT

12

∆12
)J0(

ωT
41

∆41
)eiφ

′
12 . The eigenvalues of a diamond Hamiltonian can be calibrated by spectroscopy

measurement in experiment as illustrated in Fig. S3(b).
To conclude, the non-Abelian system synthesized by transmons can be constructed by adjusting the corresponding

parameters of the longitudinal parametric modulation. For instance, the widely used non-Abelian model H(λ) =

d0(λ) +
∑5

k=1 dk(λ)Γk, which is the one of the most important toy model to understand the topological properties in
physics, can be realized based on Eq. (S13) and Eq. (S14). Here, d0(λ) and dk(λ) are real functions of the parameter
λ = (λ1, λ2, λ3, λ4, λ5), and the Dirac matrices Γk satisfy {Γk,Γk′} = 2δkk′ .
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III. BERNEVIG–HUGHES–ZHANG MODEL

In this article, we choose the Bernevig–Hughes–Zhang (BHZ) model to demonstrate the validity of our approach.
BHZ model effectively describes the spin Hall effect under the time-reversal symmetry in the system of two-dimensional
time-reversal-invariant topological insulator HgTe/CdTe quantum wells [13–15], which describe the spin Hall effect
under the time-reversal symmetry [16–20]. The Hamiltonian is written as

HBHZ =

 Bz 0 Bx − iBy Bg

0 Bz Bg −Bx − iBy

Bx + iBy Bg −Bz 0
Bg −Bx + iBy 0 −Bz

 (S15)

where Bx = Hxy sin kx, By = Hxy sin ky, Bz = M − 2Hz(2− cos kx − cos ky). The momentum kx, ky are constrained
to [−π, π] and the material parameters which depend on the quantum well geometry are labeled as Hxy, M , and Hz.
The Hamiltonian eigenvalues E± = ±

√
B2

x +B2
y +B2

z +B2
g .

In the sphere coordinate, the Eq. (S15) can be parameterized as

H =
HBHZ

|E±|
=


cos θ 0 e−iφ sin θ sin γ sin θ cos γ
0 cos θ sin θ cos γ −eiφ sin θ sin γ

eiφ sin θ sin γ sin θ cos γ − cos θ 0
sin θ cos γ −e−iφ sin θ sin γ 0 − cos θ

 (S16)

where θ = arctan Ω1

Bz
, γ = arctan Ω2

Bg
, and φ = arctan

By

Bx
, respectively, with θ ∈ [0, π], γ ∈ [0, π], φ ∈ [0, 2π],

respectively. The energy parameters are Ω1 =
√
B2

x +B2
y +B2

g and Ω2 =
√
B2

x +B2
y . The eigenstates can be written

as

|ψ−
1 ⟩ =


sin γ cos θ

2

eiφ sin θ
2

eiφ cos θ
2 cos γ
0

 , |ψ−
2 ⟩ =


e−iφ cos θ

2 cos γ
0

− sin γ cos θ
2

e−iφ sin θ
2

 ,

|ψ+
1 ⟩ =


sin θ

2 sin γ
−eiφ cos θ

2

eiφ sin θ
2 cos γ
0

 , |ψ+
2 ⟩ =


−e−iφ sin θ

2 cos γ
0

sin θ
2 sin γ

e−iφ cos θ
2


(S17)

with the eigenvalues E± = ±1.
Notice the manifold of the quantum state is sphere surface S3 in the Hilbert space, while the Hamiltonian is a

non-Abelian one. We can derive its topological and geometric properties step by step. First is the gauge potential,
the non-Abelian Berry connection is defined as

Aµ
nm(λ) = i⟨ψn|

∂

∂λµ
|ψm⟩ (S18)

Then, the corresponding vector gauge fields read

Aθ =

[
0 0
0 0

]
, Aγ = cos2

θ

2

[
0 −e−iφ

eiφ 0

]
,

Aφ = i
θ

2

[
sin2 θ

2 + cos2 θ
2 cos

2 γ − cos2 θ
2 sin γ cos γe

−iφ

− cos2 θ
2 sin γ cos γe

iφ − sin2 θ
2 sin

2 γ − cos2 γ

] (S19)

with the relationships of commutation

[Aθ, Aγ ] =

[
0 0
0 0

]
, [Aθ, Aφ] =

[
0 0
0 0

]
,

[Aγ , Aφ] = i cos2
θ

2

[
cos2 θ

2 sin γ cos γ
(
1− 2 cos2 θ

2 sin
2 γ

)
e−iφ(

1− 2 cos2 θ
2 sin

2 γ
)
eiφ − cos2 θ

2 sin γ cos γ

] (S20)
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Since the quantum system is a non-Abelian system, its geometric feature is described by the Wilczek-Zee phase. The
topological properties of the manifold is characterized by geometric tensor which is written as

Qθθ =
1

4

[
1 0
0 1

]
Qγγ =

1

4
sin2 θ

[
1 0
0 1

]
Qφφ =

1

4
sin2 θ sin2 γ

[
1 0
0 1

]
Qθγ =

1

4
sin θ

[
0 e−iφ

−eiφ 0

]
Qθφ =

i

4
sin θ sin γ

[
sin γ cos γe−iφ

cos γeiφ − sin γ

]
Qγφ =

i

4
sin2 θ sin γ

[
− cos γ sin γe−iφ

sin γeiφ cos γ

]

(S21)

The corresponding quantum metric tensors are

gθθ =
1

4

[
1 0

0 1

]
, gγγ =

1

4
sin2 θ

[
1 0

0 1

]
, gφφ =

1

4
sin2 θ sin2 γ

[
1 0

0 1

]
,

gθγ =
1

4
sin θ

[
0 cosφ

cosφ 0

]
, gθφ =

1

4
sin θ sin γ

[
0 cos γ sinφ

− cos γ sinφ 0

]
,

gγφ =
1

4
sin2 θ sin γ

[
0 sin γ sinφ

− sin γ sinφ 0

]
,

(S22)

The topological invariant including winding number and geometric phase are closely related to Berry curvatures,
which can be derived from Berry connection and geometric tensor. According the relation Fµν(λ) = ∂Aν

∂λµ
− ∂Aµ

∂λν
−

i [Aµ, Aν ] and Fµν = i(Qµν − [Qµν ]†) we can obtain

F θγ = [F γθ]† =
1

2
sin θ

[
0 e−iφ

−e−iφ 0

]
,

F θφ = [Fφθ]† = i
1

2
sin θ sin γ

[
sin γ cos γe−iφ

cos γeiφ − sin γ

]
,

F γφ = [Fφγ ]† = i
1

2
sin2 θ sin γ

[
− cos γ sin γe−iφ

sin γeiφ cos γ

]
.

(S23)

and the null-terms are not listed here.

IV. BHZ MODEL UNDER MORRIS–SHORE TRANSFORMATION

The Hamiltonian of the BHZ model is constructed in the four-dimensional space spanned with parameters {θ, γ, φ}.
This Hamiltonian can be simulated in our quantum circuit, but to improve the experimental fidelity we deform it into
a two-level subspace by the Morris–Shore transformation UMS , of which matrix is written as

UMS =
1

2



cos γ

cos ( γ
2 +

π
4 )

(1−sin γ)e−iφ

cos ( γ
2 +

π
4 )

0 0

0 0 cos γ

cos ( γ
2 +

π
4 )

(1−sin γ)eiφ

cos ( γ
2 +

π
4 )

eiφ cos γ

sin ( γ
2 +

π
4 )

− 1+sin γ

sin ( γ
2 +

π
4 )

0 0

0 0 e−iφ cos γ

sin ( γ
2 +

π
4 )

− 1+sin γ

sin ( γ
2 +

π
4 )

 (S24)

After the transformation, the modified Hamiltonian can be rewritten as

H
′

s =


cos θ e−iφ sin θ 0 0

eiφ sin θ − cos θ 0 0
0 0 cos θ −eiφ sin θ
0 0 −e−iφ sin θ − cos θ

 , (S25)
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(a) (b)

P t(µ
s) P

f(M
Hz)

FIG. S4. Resonant Rabi oscillation under different types of parametric modulation in subspace S22. (a) The
Rabi oscillations are obtained at various θ. We point out that the occupation states are located in the lower-band states with
the eigenvalue E−. From left to right and top to bottom, we show the Rabi oscillations under the single modulation: φ, θ; and
two parameters modulation φ and θ at δϕ = 0, and δϕ = 0.5π, respectively. (b) The Rabi oscillation frequencies are extracted
from (a) by FFT.

which is the parameters space {θ, φ}. Therefore, the metric tensor Eq. S22 deforms to

gθθ =
1

4

[
1 0

0 1

]
, gφφ =

1

4
sin2 θ

[
1 0

0 1

]
, gθφ =

1

4
sin θ

[
0 sinφ

− sinφ 0

]
, (S26)

which is obtained in our experiment. As we explain in the main text, this simplification does not fade our quantum
simulations. The new Hamiltonian captures the features of the band structure of the topological material, while the
measured spin Chern number reveals the physical properties of the quantum system. Besides, in practice, this protocol
can greatly reduce the experimental error, such as the imperfection of the applied pulse in parametric modulation.

Since the MS transformation reduces the parameter dimension, only parts of the quantum geometric metric were
measured. Similar to projecting along different axes in quantum of state tomography, we need to ’rotate’ the Hamil-
tonian to read different parts of the metric tensor, then we can construct the entire QGT. For instance, to obtain the
metric tensor related to the parameter γ, we can apply the Hamiltonian Eq. S16 with the unitary transformation to
exchange the diagonal and anti-diagonal elements of the matrix, such as�

UR =


1√
2

0 0 − 1√
2

0 1√
2

− 1√
2

0

0 1√
2

1√
2

0
1√
2

0 0 1√
2

 , (S27)

then we measure the Qγγ , Qγφ, and Qθγ with corresponding MS operations.

V. MEASUREMENT OF NON-ABELIAN QUANTUM GEOMETRIC TENSOR

Periodic drivings.— For simplicity, the Hamiltonian Eq. (S13) of the non-Abelian QGT in experiment is reduced
to

Hs =


∆ Ωe−iφ 0 0

Ωeiφ −∆ 0 0
0 0 ∆ −Ωeiφ
0 0 −Ωe−iφ −∆

 (S28)

with ∆ = δ12 = δ34, Ω = |g12J1( ωT
12

∆12
)| = |g34J1( ωT

34

∆34
)|, φ = φ12 − ωT

12

∆12
sinφ12 = −φ34 − ωT

34

∆34
sinφ34, respectively.

Therefore, the non-Abelian Hamiltonian Eq. (5) in main text can be obtained by introducing parameters θ = arctan Ω
∆
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FIG. S5. Simulation results of the quantum geometric tensor. Simulation results under the experimental conditions
in the main text Fig. 4 (a). The dashed lines are the theoretical expectations while the points denote the simulation results.

and Ω0 =
√
∆2 +Ω2. As elaborated in the main text, the weak periodic parametric modulation field A cos(ωt+ ϕµ)

has been introduced, in which the amplitude A and frequency ω satisfy A ≪ ω to meet the condition for the
perturbation to extract the QGT by measuring Rabi oscillations. For facilitating the state initialization and improving
the measurement fidelity, we introduce a unitary operator UR as used in Ref. [21] to rotate the frame U†

RHsUR in
the experiment to keep the instantaneous eigenstate of the Hamiltonian in the |1000⟩ or |0010⟩ at t = 0. According
to Eq. (2) an Eq. (3) in main text, we can construct the weak periodic parametric fields

δωθθ
1 (t) = A cos (ωt+ ϕθ) cos(∆t− ωt+ φ),

δωθθ
2 (t) = A cos (ωt+ ϕθ) cos(ωt−∆t− φ),

δωφφ
1 (t) = A sin θ cos (ωt+ ϕφ) cos(∆t− ωt+ φ),

δωφφ
2 (t) = A sin θ cos (ωt+ ϕφ) cos(ωt−∆t− φ),

δωθφ
1 (t) = A sin θ cos (ωt+ ϕφ) cos(∆t− ωt+ φ) +A cos (ωt+ ϕθ) cos(∆t− ωt+ φ),

δωθφ
2 (t) = A sin θ cos (ωt+ ϕφ) cos(∆t− ωt− φ) +A cos (ωt+ ϕθ) cos(∆t− ωt− φ),

(S29)

which correspond the different QGT measurements Qθθ
11, Qθθ

22, Qφφ
11 , Qφφ

22 , Qθφ
11 , and Qθφ

22 , respectively.
Supplementary results.— Since the Rabi signals oscillate between the eigenstates, which can be independently

measured by multi-tone readout, the QGT can also be extracted by measuring the excited states |Ψ1(λ)⟩. Moreover,
for our two-band two-degeneracy system, we can also assume that an occupation of states is located on upper band
E+, making that the QGT under two parameters modulation can be written as

QQGT = Qµµ
jj +Qνν

jj − e−iδϕQµν
jj − eiδϕQνµ

jj , (S30)

which is different with the one in main text. Therefore, the QGT terms in Eq. (6) in main text become

[Qθθ]+ =
1

4

[
1 0
0 1

]
, [Qφφ]+ =

1

4
sin2 θ

[
1 0
0 1

]
, [Qθφ]+ =

i

4
sin θ

[
1 0
0 −1

]
, (S31)

and here, we supply the results about the Rabi oscillations in subspace S22, as shown in Fig. S4(a) and (b), which
are measured under the ground state |Ψ0(λ)⟩, respectively.

Simulation results.— Here, we have supplied some simulation results to clarify the differences between our exper-
imental results and theoretical expectations in the main text Fig. 4(a). We note that for numerical simulation, the
modulation amplitude A′

/2π = 3.05 MHz we used is slightly larger than the ideal value 3 MHz to cancel the shifting
amplitude due to the imperfect modulation pulses in practical used. This shifting amplitude can be calibrated accord-
ing to the measurement of Rabi oscillations used in the experiment procedure. As shown in Fig. S5, the simulation
results (the dashed lines) are in good agreement with the theoretical expectations (the points). Compared with these
simulation results, we believe that these differences mainly come from the uncertainty of our calibrated parameters
(such as the frequencies of qubits, the modulation amplitude A, etc.) rather than the decoherence times. In exper-
iment, we usually obtain the bigger values than theoretical expectations, because the Rabi frequency we measured
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Ω0 =
√
Ω2 +∆2 includes the detuning (∆ ̸= 0) while we set the ideal detuning (∆ = 0) in Fig. 4(a). Here, the

detuning is usually caused by the uncertainty of qubits frequencies.
In our experiment, the QGT can be obtained according to the Rabi frequency Ω0 =

√
A2QQGT +∆ (Eq. (2) in

main text) if the modulation amplitude A and frequency ω satisfy A≪ ω, where QQGT is directly related to the QGT
terms we measured (Details see the sentences below Eq. (2) in main text). First, the decoherence times T1 and T2 lead
to the decay of Rabi oscillations with the Rabi frequency Ω0 ∼ A

√
QQGT . If the amplitude A is not large enough, the

oscillations is too slow hence the decay limits the QGT measurement in the system with short decoherence times. In
addition, the stability of a system is also very important, because the uncertainty of the calibrated parameters (such
as the detuning ∆) will introduce the inaccuracy of the Rabi frequency. Nevertheless, in most cases, the measurement
of the Rabi frequency is a very simple but reliable method, hence the results obtained agree with the theory well.
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