Supplementary Information：Microwave－Induced Ultralong－Range Charge Migration in a Rydberg Atom

Huihui Wang（王慧慧）$)^{1,2}$ ，Yuechun Jiao（焦月春）$)^{1,2}$ ，Jianming Zhao（赵建明）${ }^{1,2 *}$ ， Liantuan Xiao（肖连团 $)^{1,2}$ ，Suotang Jia（贾锁堂 $)^{1,2}$
${ }^{1}$ State Key Laboratory of Quantum Optics and Quantum Optics Devices，Institute of Laser Spectroscopy，Shanxi University，Taiyuan，030006，China；
${ }^{2}$ Collaborative Innovation Center of Extreme Optics，Shanxi University，Taiyuan，030006，China

I．PROPAGATION OF THE ELECTRON DENSITY

The Rydberg state $40 S_{1 / 2}$ means a state with principle quantum number $n=40$ ，quantum numbers for orbital angular momentum $l=0$ and total angular momentum $J=1 / 2$ ，respectively．Through this work we focus on Cs Rydberg atoms．The two involved states $40 S_{1 / 2}$ and $40 P_{1 / 2}$ with the same z－component of J $\left(m_{J}=1 / 2\right)$ will be written as $\left|40 S_{\frac{1}{2}, \frac{1}{2}}\right\rangle$ and $\left|40 P_{\frac{1}{2}, \frac{1}{2}}\right\rangle$ ，respectively．By solving the time－dependent Schrödinger equation we obtain the time propagation of the initial state $\left|\psi\left(t^{\prime}=0\right)\right\rangle=\cos \gamma\left|40 S_{1 / 2}\right\rangle+\sin \gamma e^{i \delta}\left|40 P_{1 / 2}\right\rangle$ as

$$
\begin{equation*}
\left|\psi\left(t^{\prime}\right)\right\rangle=\cos \gamma e^{-i E_{40 S_{1 / 2}} t^{\prime} / \hbar}\left|40 S_{\frac{1}{2}, \frac{1}{2}}\right\rangle+\sin \gamma e^{i \delta-i E_{40 P_{1 / 2}} t^{\prime} / \hbar}\left|40 P_{\frac{1}{2}, \frac{1}{2}}\right\rangle \tag{1}
\end{equation*}
$$

where $E_{40 S_{1 / 2}}$ and $E_{40 P_{1 / 2}}$ are the eigenenergies of the two egenstates $\left|40 S_{\frac{1}{2}, \frac{1}{2}}\right\rangle$ and $\left|40 P_{\frac{1}{2}, \frac{1}{2}}\right\rangle$ ，respectively．In the representation of electron position \mathbf{r}^{\prime} and electron spin ξ^{\prime} ，the wavefunction is $\psi\left(\mathbf{r}^{\prime}, \xi^{\prime}, t^{\prime}\right)=\left\langle\mathbf{r}^{\prime}, \xi^{\prime} \mid \psi\left(t^{\prime}\right)\right\rangle$ ． The eigenfunctions of the two involved states can be factorized as

$$
\begin{align*}
& \left\langle\mathbf{r}^{\prime}, \xi^{\prime} \left\lvert\, 40 S_{\frac{1}{2}, \frac{1}{2}}\right.\right\rangle=R_{40 S_{1 / 2}}\left(r^{\prime}\right) \chi_{0 \frac{1}{2} \frac{1}{2}}\left(\xi^{\prime}, \theta^{\prime}, \varphi^{\prime}\right) \tag{2}\\
& \left\langle\mathbf{r}^{\prime}, \xi^{\prime} \left\lvert\, 40 P_{\frac{1}{2}, \frac{1}{2}}\right.\right\rangle=R_{40 P_{1 / 2}}\left(r^{\prime}\right) \chi_{1 \frac{1}{2} \frac{1}{2}}\left(\xi^{\prime}, \theta^{\prime}, \varphi^{\prime}\right)
\end{align*}
$$

Here $R_{40 S_{1 / 2}}(r)$ and $R_{40 P_{1 / 2}}(r)$ are the corresponding radial wavefunctions．The radial wavefunction $R_{n l J}(r)$ is obtained by the Alkali Rydberg Calculator（ARC）package codes as detailed in ref［1］．The effective one－electron potential includes the spin－orbit interaction term $\frac{\mathbf{L} \cdot \mathbf{S}}{137^{2} \times 2 r^{3}}$ as implemented in the ARC codes．Consequently the effective potential and the radial wavefunctions depend on the quantum number J ．Accordingly the radial probability densities $P(r)=r^{2} R_{n l J}^{2}(r)$ of the $40 S_{1 / 2}$ and $40 P_{1 / 2}$ states are shown in Fig．S1．

The functions for electron spin ξ^{\prime} and the two angles $\left(\theta^{\prime}, \varphi^{\prime}\right)$ are

$$
\begin{align*}
& \chi_{0 \frac{1}{2} \frac{1}{2}}\left(\xi^{\prime}, \theta^{\prime}, \varphi^{\prime}\right)=\alpha\left(\xi^{\prime}\right) Y_{00}\left(\theta^{\prime}, \varphi^{\prime}\right) \\
& \chi_{1 \frac{1}{2} \frac{1}{2}}\left(\xi^{\prime}, \theta^{\prime}, \varphi^{\prime}\right)=-\sqrt{\frac{1}{3}} \alpha\left(\xi^{\prime}\right) Y_{10}\left(\theta^{\prime}, \varphi^{\prime}\right)+\sqrt{\frac{2}{3}} \beta\left(\xi^{\prime}\right) Y_{11}\left(\theta^{\prime}, \varphi^{\prime}\right) \tag{3}
\end{align*}
$$

Here $\alpha\left(\xi^{\prime}\right)$ and $\beta\left(\xi^{\prime}\right)$ are the spin wavefunctions for the states with spin－up and spin－down，respectively．And $Y_{l m}\left(\theta^{\prime}, \varphi^{\prime}\right)$ is the spherical harmonics．To simplify the notations，$R_{40 S_{1 / 2}}(r)$ and $R_{40 P_{1 / 2}}(r)$ will be written as $R_{40 S}(r)$ and $R_{40 P}(r)$ ，respectively．

The expression of the system wavefunction $\psi\left(\mathbf{r}^{\prime}, \xi^{\prime}, t^{\prime}\right)=\left\langle\mathbf{r}^{\prime}, \xi^{\prime} \mid \psi\left(t^{\prime}\right)\right\rangle$ can be obtained from eqs．（1－3）．The corresponding electron density $\rho\left(\mathbf{r}, t^{\prime}\right)$ can be obtained by evaluating the mean value of the density operator

[^0]

Figure S1: The radial probability density $P(r)=r^{2} R_{n l J}^{2}(r)$.

$$
\begin{align*}
\rho\left(\mathbf{r}, t^{\prime}\right) & =\left\langle\psi\left(t^{\prime}\right)\right| \delta\left(\mathbf{r}-\mathbf{r}^{\prime}\right)\left|\psi\left(t^{\prime}\right)\right\rangle \\
& \equiv \int \psi^{*}\left(\mathbf{r}^{\prime}, \xi^{\prime}, t^{\prime}\right) \delta\left(\mathbf{r}-\mathbf{r}^{\prime}\right) \psi\left(\mathbf{r}^{\prime}, \xi^{\prime}, t^{\prime}\right) d \mathbf{r}^{\prime} d \xi^{\prime} \\
& =\cos ^{2} \gamma R_{40 S}^{2} Y_{00}^{2}+\sin ^{2} \gamma R_{40 P}^{2}\left(\frac{1}{3} Y_{10}^{2}+\frac{2}{3} Y_{11}^{2}\right) \tag{4}\\
& -\sqrt{\frac{1}{3}} \sin 2 \gamma \cos \left(\delta-\omega t^{\prime}\right) R_{40 S} R_{40 P} Y_{00} Y_{10},
\end{align*}
$$

where $\omega=\frac{E_{40 P_{1 / 2}}-E_{40 S_{1 / 2}}}{\hbar}=2 \pi \times 63.6 \mathrm{GHz}$.
The phase difference δ only defines the time reference. Observing $\rho\left(\mathbf{r}, t^{\prime}\right)$ starting from different time will not change the essence of the charge migration phenomenon. For convenience we define $t^{\prime}=\frac{\delta}{\omega}$ as the starting time for observing the density, namely a new time $t=t^{\prime}-\frac{\delta}{\omega}$. The migrating part of the density is

$$
\begin{align*}
\Delta \rho(\mathbf{r}, t) & =\rho(\mathbf{r}, t)-\langle\rho(\mathbf{r})\rangle_{T} \\
& =-\sqrt{\frac{1}{3}} \sin 2 \gamma \cos (\omega t) R_{40 S} R_{40 P} Y_{00} Y_{10} \tag{5}
\end{align*}
$$

where $\langle\rho(\mathbf{r})\rangle_{T}$ is the average density in one period $T=\frac{1}{63.6 \mathrm{GHz}}=15.7 \mathrm{ps}$. Apparently $\langle\rho(\mathbf{r})\rangle_{T}$ is just the sum of the time-independent terms in Eq. (4).

Since the microwave is polarized along z-axis, the migrating part of the density $\Delta \rho(\mathbf{r}, t)$ has cylindrical symmetry. It is then convenient to use the cylindrical coordinates (z, u, φ). The relations between the cylindrical coordinates, the spherical coordinates (r, θ, φ), and the cartesian coordinates (x, y, z) are

$$
\left\{\begin{array}{l}
z=r \cos \theta \tag{6}\\
u=r \sin \theta \\
\varphi=\varphi
\end{array},\left\{\begin{array}{l}
x=u \cos \varphi \\
y=u \sin \varphi \\
z=z
\end{array}\right.\right.
$$

The migrating part of the density $\Delta \rho$ does not depend on φ. Figures S2a and S2b show the details of $\Delta \rho(z, u, t=$ $0)$ and $\Delta \rho\left(z, u, t=\frac{T}{2}\right)$, respectively. The net charge migration is apparently from $z<0$ to $z>0$ for $0<t<\frac{T}{2}$.

Figure S2: The migrating part of the density $\Delta \rho(z, u, \varphi, t)$ at a given time t for arbitrary φ in the cylindrical coordinates (z, u, φ). The unit of $\Delta \rho$ is a_{0}^{-3}. Panels A and B are for $t=0$ and $t=\frac{T}{2}$, respectively.

However there are also some small regions in which the charge migrates in the opposite direction. This is a consequence of the large number of nodes of the radial wavefunctions.

In the following we focus on the one-dimensional electron density $\Delta \rho(z, t)$ along z-axis

$$
\begin{equation*}
\Delta \rho(z, t)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \Delta \rho(\mathbf{r}, t) d x d y=2 \pi \int_{0}^{\infty} \Delta \rho(z, u, t) u d u \tag{7}
\end{equation*}
$$

In the numerical calculations, we first get $\Delta \rho(z, u, t)$ in the cylindrical coordinates. Then we obtain $\Delta \rho(z, t)$ by integrating $\Delta \rho(z, u, t)$ over u. The one-dimensional densities $\Delta \rho(z, t)$ at different times are shown in Fig. S3.

II. THE ELECTRON FLUX DENSITY AND FLUX

The flux density can be obtained as the mean value of the flux operator

$$
\begin{align*}
\mathbf{j}(\mathbf{r}, t) & =\langle\psi(t)| \frac{\mathbf{P}}{2 m} \delta\left(\mathbf{r}-\mathbf{r}^{\prime}\right)+\delta\left(\mathbf{r}-\mathbf{r}^{\prime}\right) \frac{\mathbf{P}}{2 m}|\psi(t)\rangle \\
& =\frac{\hbar}{4 \sqrt{3 \pi} m} \sin (2 \gamma) \sin (\omega t) \tag{8}\\
& \times\left[R_{40 S} \nabla\left(R_{40 P} Y_{10}\right)-R_{40 P} Y_{10} \nabla R_{40 S}\right],
\end{align*}
$$

where $\mathbf{P}=-i \hbar \nabla$ is the momentum operator. In the spherical coordinates, the flux density is

$$
\begin{equation*}
\mathbf{j}(\mathbf{r}, t)=\hat{\mathbf{e}}_{r} j_{r}(\mathbf{r}, t)+\hat{\mathbf{e}}_{\theta} j_{\theta}(\mathbf{r}, t)+\hat{\mathbf{e}}_{\varphi} j_{\varphi}(\mathbf{r}, t) . \tag{9}
\end{equation*}
$$

Apparently we have $j_{\varphi}(\mathbf{r}, t)=0$. The other two components are

$$
\begin{align*}
& j_{r}(\mathbf{r}, t)=\frac{\hbar}{8 \pi m} \sin (2 \gamma) \sin (\omega t) \cos \theta\left[R_{40 S} \frac{d R_{40 P}}{d r}-R_{40 P} \frac{d R_{40 S}}{d r}\right] \\
& j_{\theta}(\mathbf{r}, t)=-\frac{\hbar}{8 \pi m} \sin (2 \gamma) \sin (\omega t) \frac{1}{r} R_{40 S} R_{40 P} \sin \theta . \tag{10}
\end{align*}
$$

Figure S3: The migrating part of the density $\Delta \rho(z, t)$ at different time in units of a_{0}^{-1}.

The electron flux along z-axis F_{z} can be obtained by

$$
\begin{align*}
F_{z}(z, t) & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \mathbf{j}(\mathbf{r}, t) \cdot \hat{\mathbf{e}}_{z} d x d y \\
& =\frac{\hbar}{8 \pi m} \sin (2 \gamma) \sin (\omega t) \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left[\cos ^{2} \theta R_{40 S} \frac{d R_{40 P}}{d r}\right. \tag{11}\\
& \left.-\cos ^{2} \theta R_{40 P} \frac{d R_{40 S}}{d r}+\frac{1}{r} \sin ^{2} \theta R_{40 S} R_{40 P}\right] d x d y .
\end{align*}
$$

In principle we can carry out the above two-fold integration to get $F_{z}(z, t)$. However there is an alternative way to get the flux $F_{z}(z, t)$ according to the one-dimensional continuity equation

$$
\begin{equation*}
\frac{\partial F_{z}(z, t)}{\partial z}+\frac{\partial \rho(z, t)}{\partial t}=0 \tag{12}
\end{equation*}
$$

Accordingly the flux $F_{z}(z, t)$ can be evaluated by

$$
\begin{equation*}
F_{z}(z, t)=-\int_{-\infty}^{z} \frac{\partial \Delta \rho\left(z^{\prime}, t\right)}{\partial t} d z^{\prime} \tag{13}
\end{equation*}
$$

Since we already have $\Delta \rho(z, t)$ at hand, the electron flux $F_{z}(z, t)$ is obtained by Eq. (13).

III. THE DIPOLE MOMENT AND THE MIGRATING CHARGE

The dipole moment of the system can be obtained by evaluating the mean value of the dipole operator

$$
\begin{equation*}
\boldsymbol{\mu}(t)=-\langle\psi(t)| e \mathbf{r}|\psi(t)\rangle . \tag{14}
\end{equation*}
$$

The only nonzero component of $\boldsymbol{\mu}(t)$ is

$$
\begin{equation*}
\mu_{z}(t)=-\langle\psi(t)| e z|\psi(t)\rangle=-e \int_{-\infty}^{+\infty} z \Delta \rho(z, t) d z \tag{15}
\end{equation*}
$$

By numerical integration of eq.(15) we obtain $\mu_{z}(t)=\mu_{z}^{\max } \cos (\omega t)$ with $\mu_{z}^{\max }=513.7 e a_{0}=1305.7$ Debye.

The total migrating charge ΔQ_{m} can be obtained in terms of either the flux $F_{z}(z, t)$ or the density $\Delta \rho(z, t)$. The following four equivalent expressions all get the total charge which migrates from $z<0$ to $z>0$ (or the reverse) in a half period $\frac{T}{2}$:

$$
\begin{align*}
\Delta Q_{m} & =-e \int_{0}^{\frac{T}{2}} F_{z}(z=0, t) d t \\
& =e \int_{\frac{T}{2}}^{T} F_{z}(z=0, t) d t \\
& =-e \int_{-\infty}^{0}\left[\Delta \rho(z, t=0)-\Delta \rho\left(z, t=\frac{T}{2}\right)\right] d z \tag{16}\\
& =-e \int_{0}^{+\infty}\left[\Delta \rho\left(z, t=\frac{T}{2}\right)-\Delta \rho(z, t=0)\right] d z \\
& =-0.35 e
\end{align*}
$$

IV. DETAILS FOR FEASIBLE EXPERIMENTAL REALIZATION

For the experiment, cesium atoms will be trapped in a magneto-optical trap (MOT) with a temperature of about $100 \mu \mathrm{~K}$ using laser cooling and trap technique. The MOT temperature can be further decreased to a few $\mu \mathrm{K}$ by an optical molasses and evaporation cooling technique. The ultracold Cs atoms are then loaded into a tightly focused optical tweeze to prepare a single atom and then optically pumped to the $\left|6 S_{1 / 2}\left(F=4, m_{F}=4\right)\right\rangle$ Zeeman level with a circularly polarized laser. Rydberg excitation of the $\left|40 S_{1 / 2}\left(m_{J}=1 / 2\right)\right\rangle$ state can be realized with a two-photon scheme as shown in Fig. S4a. Firstly a 852 nm laser with the σ^{+}polarization drives the $\left.\mid 6 S_{1 / 2}\left(F=4, m_{F}=4\right\rangle\right)$ to $\left|6 P_{3 / 2}\left(F^{\prime}=5, m_{F}=5\right)\right\rangle$ transition. Then a 510 nm laser with the σ^{-} polarization excites the $\left|6 P_{3 / 2}\left(F^{\prime}=5, m_{F}=5\right)\right\rangle$ state to the $\left|40 S_{1 / 2}\left(m_{J}=1 / 2\right)\right\rangle$ state.

Figure S4: The scheme for the preparation of the initial state $\left|\psi\left(t^{\prime}=0\right)\right\rangle$. a. Two-photon excitation to the Rydberg state $40 S_{1 / 2}$ and partial transition from $40 S_{1 / 2}$ to $40 P_{1 / 2}$ by a microwave pulse. b. The experimental setup. The cesium atoms are first trapped in a MOT (not shown in here), then loaded into a optical tweeze (OT). c. The time sequence for loading and cooling, optical pumping, Rydberg excitation, and microwave transition.

After that, a linearly polarized (z-polarization) $63.6-\mathrm{GHz}$ microwave field can be applied to couple the $\left|40 S_{\frac{1}{2}, \frac{1}{2}}\right\rangle$ and $\left|40 P_{\frac{1}{2}, \frac{1}{2}}\right\rangle$ states, which produces a superposition state of $\left|40 S_{\frac{1}{2}, \frac{1}{2}}\right\rangle$ and $\left|40 P_{\frac{1}{2}, \frac{1}{2}}\right\rangle$. The interaction
between the microwave and a Cs atom is $-\boldsymbol{\mu}^{\mathrm{T}} \cdot \mathbf{E}$, where $\boldsymbol{\mu}^{\mathrm{T}}$ is the transition dipole moment and \mathbf{E} is the amplitude of the microwave field. Since the field is z-polarized, we only need the z-component μ_{z}^{T}, which is -1305.2 Debye. By selecting appropriate microwave pulse parameters, the initial state can be prepared as $\left|\psi\left(t^{\prime}=0\right)\right\rangle=\cos \gamma\left|40 S_{\frac{1}{2}, \frac{1}{2}}\right\rangle+\sin \gamma e^{i \delta}\left|40 P_{\frac{1}{2}, \frac{1}{2}}\right\rangle$. The details of the experimental setup and the time sequence of the applied external fields are shown in Figs. S4b and S4c, respectively. For the experimental condition with a field strength of $1.0 \mathrm{mV} / \mathrm{cm}$ and a pulse duration of $0.38 \mu \mathrm{~s}, \gamma=\frac{\pi}{4}$ is reached which corresponds to equal population of the $40 S_{1 / 2}$ and $40 P_{1 / 2}$ states. This can be verified by the state-selective field ionization technique. The phase difference δ can not be determined. However the information we obtained is sufficient to unravel the essence of charge migration. Note the phenomenon of ultralong-range charge migration is more or less robust for different parameters δ and γ.
[1] Šibalić N, Pritchard J D, Weatherill K J and Adams C S 2017 Comput. Phys. Commun. 220319

[^0]: ＊Electronic address：zhaojm＠sxu．edu．cn

