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In the supplementary material, we will show that the velocity of a wave packet is dependent on the Berry curvature
defined by right eigenstates in non-Hermitian systems in Section S-1, present the eigenvalues of the Hamiltonian in the
main text in Section S-2, discuss the effects of non-Hermitian anomalous Berry connection in a flattened Hamiltonian
in Section S-3, analyze the constraints on non-Hermitian anomalous Berry connection imposed by time-reversal
symmetry and inversion symmetry or two-fold rotational symmetry in Section S-4, present non-Hermitian anomalous
Berry connection in other non-Hermitian models with skin effects in Section S-5, and provide an experimental scheme
with coupled resonator optical waveguides in Section S-6.

S-1. RELEVANT BERRY CURVATURE IN NON-HERMITIAN SYSTEMS

In this section, we will show that the velocity of a wave packet is dependent on the Berry curvature defined by right
eigenstates.

A. Expectation value of an observable

A quantum non-Hermitian system usually appears due to the system coupled to an environment constituting an
open quantum system. Such a system is usually described by the master equation

i∂tρ = [Heff , ρ]′ +
∑
j

LjρL
†
j , (S1)

where ρ is the density matrix, [Heff , ρ]′ = Heffρ − ρH†eff with Heff = Hs − i 12
∑
j L
†
jLj being an effective non-

Hermitian Hamiltonian, Hs is the Hamiltonian of the system, and Lj is the jump operator. If we consider short
time dynamics or consider the postselection so that the results corresponding to occurrence of a quantum jump are
discarded, the dynamics is governed by

i∂tρ = [Heff , ρ]′. (S2)

If an initial state is a pure state |Ψ(t = 0)〉 [ρ(t = 0) = |Ψ(t = 0)〉〈Ψ(t = 0)|], then the state evolves as ρ(t) =
|Ψ(t)〉〈Ψ(t)|, where |Ψ(t)〉 evolves according to

i∂t|Ψ(t)〉 = Heff |Ψ(t)〉. (S3)

The expectation value of an observable O is thus given by

〈O〉 =
Tr[Oρ(t)]

Tr[ρ(t)]
=

Tr[O|Ψ(t)〉〈Ψ(t)|]
Tr[|Ψ(t)〉〈Ψ(t)|]

= 〈Ψ1|O|Ψ1〉, (S4)

where |Ψ1〉 = |Ψ(t)〉/
√
〈Ψ(t)|Ψ(t)〉. In the derivation, we have chosen an orthonormal basis including |Ψ1〉 for the

Hilbert space, β = {|Ψ1〉, |Ψ2〉, · · · , |ΨN 〉} (N denotes the dimension of the Hilbert space), so that

Tr[O|Ψ(t)〉〈Ψ(t)|] = 〈Ψ1|O|Ψ1〉〈Ψ(t)|Ψ(t)〉+

N∑
j=2

〈Ψj |O|Ψ(t)〉〈Ψ(t)|Ψj〉 = 〈Ψ1|O|Ψ1〉〈Ψ(t)|Ψ(t)〉. (S5)

This tells us that the expectation value is completely determined by the evolving state |Ψ(t)〉.
In a strongly correlated or disordered system, it has been justified in Ref. [S1] that the effective non-Hermitian

Hamiltonian in the single-particle Green’s function corresponds to the non-Hermitian Hamiltonian in the context of
an open quantum system under postselection, indicating that the expectation value of an observable of a wave packet
is still determined by the evolving state |Ψ(t)〉 under the effective non-Hermitian Hamiltonian.
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B. Derivation of the semiclassical equations of motion

We now provide the detailed derivation of the semiclassical dynamics of Bloch electrons (a brief version can be
found in the Supplementary Material in Ref. [S2]). Consider a wave packet as an initial state, which can be written
in terms of the right Bloch eigenstates of a non-Hermitian Hamiltonian H without an external force as

|Φ(t = 0)〉 =

∫
k

a(k, t = 0)|φRn (k)〉, (S6)

where |φRn (k)〉 = eik·r|uRn (k)〉 is the Bloch state with |uRn (k)〉 being the right eigenstate of a non-Hermitian Hamilto-
nian. The wave packet evolves with time as

|Φ(t)〉 =

∫
k

a(k, t)|φRn (k)〉, (S7)

where a(k, t) = |a(k, t)|eiγ(k,t) with the amplitude |a(k, t)| taking the Gaussian form centered at kc =∫
k
|a(k, t)|2k/

∫
k
|a(k, t)|2 =

∫
k
|a′(k, t)|2k where |a′(k, t)|2 ≡ |a(k, t)|2/

∫
k′
|a(k′, t)|2 (while |a(k, t)| may decrease

with time in the presence of a loss term so that 〈Φ|Φ〉 =
∫
k
|a(k, t)|2 < 1, we can evaluate the expectation value of an

observable by mutiplying a factor 1/〈Φ|Φ〉).
Let us first derive the expression of γ(k, t) which contains both dynamical and geometric phases. In the presence

of an external force, the Schrödinger equation reads

i∂t|ψ(t)〉 = (H − F · r̂)|ψ(t)〉. (S8)

Consider a Bloch eigenstate at k0 as an initial state at time t0 and suppose that the external force is sufficiently weak
so that the evolving state is still a Bloch eigenstate multiplied by a factor, that is,

|ψ(t)〉 = α(t)|φRnk(t)〉 = α(t)eik(t)·r|uRnk(t)〉 (S9)

k(t) = k0 + F t. (S10)

We now substitute |ψ(t)〉 into the Schrödinger equation, yielding

i∂t|ψ(t)〉 =ieik(t)·r|uRn (k(t))〉∂tα(t)− α(t)eik(t)·r|uRn (k(t))〉F · r + iα(t)eik(t)·r∂t|uRn (k(t))〉 (S11)
=(H − F · r̂)|ψ(t)〉 (S12)

=α(t)Ĥeik(t)·r|uRn (k(t))〉 − α(t)eik(t)·r|uRn (k(t))〉F · r (S13)

=α(t)εn(k(t))eik(t)·r|uRn (k(t))〉 − α(t)eik(t)·r|uRn (k(t))〉F · r. (S14)

We thus obtain

i|uRn (k(t))〉∂tα(t) = α(t)εn(k(t))|uRn (k(t))〉 − iα(t)∂t|uRn (k(t))〉. (S15)

To derive the equation satisfied by α(t), we consider any state written as a linear combination of the left eigenstates
|uLj (k(t))〉 [note that {|uLj (k(t))〉} constitute an ordered basis, although it may not be orthogonal], that is,

|u′k(t)〉 = c∗n|uLn(k(t))〉+
∑
j 6=n

c∗j |uLj (k(t))〉. (S16)

We then multiply Eq. (S15) by 〈u′k(t)|, resulting in

icn∂tα(t) = cnα(t)[εn(k(t))− i〈uLn(k(t))|∂t|uRn (k(t))〉]− iα(t)
∑
j 6=n

cj〈uLj (k(t))|∂t|uRn (k(t))〉, (S17)

where we have used the biorthogonal relation 〈uLm(k)|uRn (k)〉 = δmn. The final term vanishes because multiplying
Eq. (S15) by

∑
j 6=n cj〈uLj (k(t))| yields

α(t)
∑
j 6=n

cj〈uLj (k(t))|∂t|uRn (k(t))〉 = 0. (S18)
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Thus, we obtain

i∂tα(t) = α(t)εn(k(t))− iα(t)〈uLn(k(t))|∂t|uRn (k(t))〉 = α(t)
[
εn(k(t))− Ãnk(t) · F

]
, (S19)

yielding

α(t) = e
−i

∫ t
t0
dt′[εn(k(t′))−Ãn(k(t

′))·F ], (S20)

where Ãn(k(t)) = i〈uLn(k)|∂kuRn (k)〉|k=k(t) is the left-right Berry connection contributing to the geometric phase.
We note that in the derivation, while one can also use the right eigenvectors to generate |u′k(t)〉, that is,

|u′k(t)〉 = b∗n|uRn (k(t))〉+
∑
j 6=n

b∗j |uRj (k(t))〉, (S21)

multiplying Eq. (S15) by this expansion cannot give us an equation as concise as Eq. (S19) due to the absence of an
orthogonal relation for right eigenvectors in non-Hermitian systems [〈uRm(k)|uRn (k)〉 usually does not vanish if m 6= n].
Note here we consider a system without exceptional points; otherwise, neither right eigenvectors nor left eigenvectors
can constitute a basis for the Hilbert space.

We are now in a position to derive the center of mass of the wave packet in real space as time evolves based on Eq.
(S7); the location of the wave packet is given by

rc(t)

=〈Φ(t)|r̂|Φ(t)〉/〈Φ(t)|Φ(t)〉 (S22)

=

∫
dr

∫
k

∫
k′
|a(k′, t)||a(k, t)|eiγ(k,t)e−iγ(k

′,t)e−ik
′·r[uRnk′(r)]†reik·ruRnk(r)/〈Φ|Φ〉 (S23)

=

∫
dr

∫
k

∫
k′
|a(k′, t)||a(k, t)|eiγ(k,t)e−iγ(k

′,t)ei(k−k
′)·rr[uRnk′(r)]†uRnk(r)/〈Φ|Φ〉 (S24)

=

∫
k

∫
k′

∫
dr|a(k′, t)||a(k, t)|eiγ(k,t)e−iγ(k

′,t)[uRnk′(r)]†uRnk(r)(−i∂k)ei(k−k
′)·r/〈Φ|Φ〉 (S25)

=

∫
k

∫
k′

∫
drei(k−k

′)·r|a(k′, t)|e−iγ(k
′,t)[uRnk′(r)]†i∂k|a(k, t)|eiγ(k,t)uRnk(r)/〈Φ|Φ〉 (S26)

=

∫
k

∫
dr|a(k, t)|e−iγ(k,t)[uRnk(r)]†i∂k|a(k, t)|eiγ(k,t)uRnk(r)/〈Φ|Φ〉 (S27)

=

∫
k

∫
dr|a(k, t)|e−iγ(k,t)[uRnk(r)]†

[
eiγ(k,t)uRnk(r)i∂k|a(k, t)| − (∂kγ(k, t))|a(k, t)|eiγ(k,t)uRnk(r)+ (S28)

|a(k, t)|eiγ(k,t)(i∂k)uRnk(r)
]
/〈Φ|Φ〉 (S29)

=

∫
k

|a(k, t)|i∂k|a(k, t)|/〈Φ|Φ〉 −
∫
k

|a(k, t)|2(∂kγ(k, t))/〈Φ|Φ〉+

∫
k

|a(k, t)|2
∫
dr[uRnk(r)]†i∂ku

R
nk(r)/〈Φ|Φ〉 (S30)

=−
∫
k

|a′(k, t)|2∂kγ(k, t) +

∫
k

|a′(k, t)|2
∫
dr[uRnk(r)]†i∂ku

R
nk(r) (S31)

=−
∫
k

|a′(k, t)|2∂kγ(k, t) +

∫
k

|a′(k, t)|2〈uRnk|i∂k|uRnk〉 (S32)

≈− ∂γ(kc, t)

∂kc
+ i〈uRnkc

|∂kc |uRnkc
〉 (S33)

=− ∂γ(kc, t)

∂kc
+ An(kc), (S34)

whereAn(kc) = i〈uRnkc
|∂kc |uRnkc

〉 is the right-right Berry connection with |uRnkc
〉 ≡ |uRn (kc)〉. With the aid of Eq. (S20),

we have

γ(kc, t) = −
∫ t

t0

dt′Re
[
εn(k(t′))− Ãn(k(t′)) · F

]
.
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We thus can derive the velocity of the wave packet as

vc(t0) =
rc(t0 + δt)− rc(t0)

δt

= ∂kc

δt
[
Re[εn(kc)]− Re[Ãn(kc)] · F

]
δt

+
dAn(kc)

dt
|t=t0

= ∂kc
Re[εn(kc)]− ∂kc

Re[Ãn,ν(kc)] · Fν +
dAn(kc)

dt
|t=t0

= ∂kcRe[εn(kc)]− (∂kcRe[Ãn,ν(kc)]) ·
·
kc,ν +

dAn(kc)

dt
|t=t0 ,

= ∂kc
Re[εn(kc)]− ∂kc

An,ν(kc) ·
·
kc,ν +

dAn(kc)

dt
|t=t0 + ∂kc

[
An,ν(kc)− ReÃn,ν(kc)

]
·
·
kc,ν

= ∂kc
Re[εn(kc)]−

·
kc ×Ω + ∂kc

Re
[
An,ν(kc)− Ãn,ν(kc)

]
·
·
kc,ν

= ∂kc
Re[εn(kc)]−

·
kc ×Ω + ∂kc

Ān,ν(kc) ·
·
kc,ν

= ∂kc
[Re[εn(kc)] + Ān,ν(kc) ·

·
kc,ν ]−

·
kc ×Ω,

where Ān,ν(kc) ≡ Re
[
An,ν(kc)− Ãn,ν(kc)

]
and Ω = i〈∇ku

R
n (k)| × |∇ku

R
n (k)〉. In the derivation, we have used the

fact that F =
·
k. We can clearly see that the velocity of a wave packet is dependent on the right-right Berry curvature,

which is independent of the left eigenstates.

S-2. EIGENENERGIES OF THE HAMILTONIAN

The Hamiltonian (5) in the main text is pseudo-Hermitian, i.e., U−1HU = H† with U = diag(
√
q, 1/
√
q), and its

eigenenergies are real, ε± = mc0+ξ± with ξ± = ±
√
ab(d2x + d2y) +m2c21 and c0 = (1−q2)/(2q) and c1 = (1+q2)/(2q).

S-3. EFFECTS OF NON-HERMITIAN ANOMALOUS BERRY CONNECTION IN A FLATTENED
HAMILTONIAN

To illustrate the non-Hermitian anomalous Berry connection effects, we can take a limit and consider a flattened
Hamiltonian

HF = |uR+〉〈uL+| − |uR−〉〈uL−|, (S35)

where |uR±〉 and 〈uL±| are the normalized right and left eigenstates of the Hamiltonian (5), respectively, corresponding
to eigenenergy ε±. For the flattened Hamiltonian, its eigenenergies are εF,± = ±1, which is independent of quasimo-
mentum k and thus the group velocity contributed by the energy dispersion vanishes. However, the non-Hermitian
anomalous velocity remains the same as in the Hamiltonian (5), since it only depends on the wave functions. In this
case, we can clearly see that even though the traditional semiclassical equations of motion predict the absence of
motion for an electron in the presence of an external electric field, our theory indicates that the electron can still move
due to the emergence of a velocity arising from the non-Hermiticity and local geometric effects. More interestingly,
given that vNA is proportional to the electric field, one can control the direction of the velocity of an electron by
suddenly reversing the direction of the electric field.

S-4. SYMMETRY CONSTRAINTS ON NON-HERMITIAN ANOMALOUS BERRY CONNECTION

In this section, we explore the constraints on non-Hermitian anomalous Berry connection imposed by time-reversal
symmetry and inversion or two-fold rotational symmetry.
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A. Time-reversal symmetry

For a non-Hermitian system, time-reversal and particle-hole symmetries develop into four categories [S3, S4]:

T±H
∗(−k)T †± = ±H(k) (S36)

Ξ±H
T (−k)Ξ†± = ±H(k), (S37)

where T± and Ξ± are unitary operators. The Hamiltonian (5) in the main text respects the time-reversal symmetry
with T+ being an identity matrix. We thus only consider the constraint imposed by T+ with T+T ∗+ = 1.

Let |uRn (k)〉 and 〈uLn(k)| be the normalized right and left eigenstate of a non-Hermitian Hamiltonian H(k) in the
nth band corresponding to an eigenvalue εn(k), respectively, that is, H(k)|uRn (k)〉 = εk|uRn (k)〉 and 〈uLn(k)|H(k) =
εk〈uLn(k)|. Based on the symmetry constraint, one can easily obtain

H(−k)T+|uRn (k)〉∗ = T+T
†
+H(−k)T+|uRn (k)〉∗ = T+H

∗(k)|uRn (k)〉∗ = ε∗n(k)T+|uRn (k)〉∗, (S38)

and

(〈uLn(k)|)∗T †+H(−k) = (〈uLn(k)|)∗H∗(k)T †+ = ε∗n(k)(〈uLn(k)|)∗T †+, (S39)

indicating that T+|uRn (k)〉∗ and (〈uLn(k)|)∗T †+ are the right and left eigenstates of H(−k) with eigenvalue ε∗n(k),
respectively. Since non-Hermitian anomalous Berry connection is gauge independent, we choose a gauge so that
|uRn (−k)〉 = T+|uRn (k)〉∗ and 〈uLn(−k)| = (〈uLn(k)|)∗T †+, which fulfill the normalization condition 〈uRn (−k)|uRn (−k)〉 =
1 and 〈uLn(−k)|uRn (−k)〉 = 1. We now derive the constraints as

An,µ(−k) = −i〈uRn (−k)|∂µuRn (−k)〉 (S40)

= −i(T+|uRn (k)〉∗)†T+|∂µuRn (k)〉∗ (S41)

= −i(〈uRn (k)|)∗|∂µuRn (k)〉∗ (S42)
= (An,µ(k))∗, (S43)

and

Ãn,µ(−k) = −i〈uLn(−k)|∂µuRn (−k)〉 = −i〈uLn(k)|∗T †+T+∂µ|uRn (k)〉∗ = (Ãn,µ(k))∗, (S44)

which yield

Ān(−k) = Ān(k). (S45)

We thus conclude that the time-reversal symmetry T+ with T+T ∗+ = 1 ensures that non-Hermitian Berry connection
Ā is an even function with respect to k.

B. Inversion symmetry or two-fold rotational symmetry

We now consider inversion symmetry or two-fold rotational symmetry which forces the Hamiltonian to respect

UH(−k)U† = H(k), (S46)

where U is a unitary operator. One can easily find that U†|uRn (k)〉 and 〈uLn(k)|U are the right and left eigenstates
of H(−k) corresponding to eigenenergy εn(k), respectively. By choosing a gauge so that |uRn (−k)〉 = U†|uRn (k)〉 and
〈uLn(−k)| = 〈uLn(k)|U , one can derive that

An(−k) = −An(k) (S47)
Ãn(−k) = −Ãn(k), (S48)

leading to

Ān(−k) = −Ān(k). (S49)

This tells us that inversion symmetry maintains that non-Hermitian anomalous Berry connection is antisymmetric
with respect to k. If a system has both time-reversal symmetry T+ and inversion or two-fold rational symmetry, then
non-Hermitian anomalous Berry connection is forced to vanish.
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FIG. S1: (Color online) (a1)(b1) Real and imaginary parts of energy spectra with respect to quasimomenta k for the Hamiltonian
(S54) with the corresponding energy spectra in the complex plane plotted in (a2) and (b2), respectively. (a3)(b3) NHABC as
a function of quasimomenta k. In (a1-a3), t1 = 2, t2 = 1, t3 = 0.8 and γ = 4/3, and in (b1-b3), t1 = 2, t2 = 1, t3 = 0 and
γ = 4/3.

C. C2T or PT symmetry

For the C2T (product of two-fold rotational symmetry and time-reversal symmetry) or PT (product of inversion
symmetry and time-reversal symmetry) symmetry, the Hamiltonian should satisfy

UT+H(k)∗(UT+)† = H(k), (S50)

where UT+ is a unitary operator. We consider the case that (UT+)(UT+)∗ = 1. Similarly, one can find that
UT+|uRn (k)〉∗ and (〈uLn(k)|)∗(UT+)† are the right and left eigenstates of H(k) corresponding to eigenenergy ε∗n(k),
respectively. If a system is in a C2T or PT symmetric state, that is, UT+|uRn (k)〉∗ = α∗|uRn (k)〉 and 〈uLn(k)|∗(UT+)† =
α〈uLn(k)| with |α| = 1, then one can easily derive

An,µ(k) = iα∗∂µα− (An,µ(k))∗ (S51)

Ãn,µ(k) = iα∗∂µα− (Ãn,µ(k))∗, (S52)

so that

Ān(k) = −Ān(k), (S53)

forcing non-Hermitian anomalous Berry connection to vanish.

S-5. NON-HERMITIAN ANOMALOUS BERRY CONNECTIONS IN OTHER MODELS

In the main text, we consider a model with pseudo-Hermiticity symmetry that exhibits large NHABC. In fact,
the NHABC is generically nonzero in a non-Hermitian system. Here, we show that NHABC can be large in other
well-known models with skin effects [S5, S6],

H(k) = dxσx + (dy + iγ/2)σy, (S54)
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FIG. S2: (Color online) (a) Lattice configurations to realize the Hamiltonian (5) in the main text. Circles labeled by A and
B represent site resonators. The effective hopping between the site resonators is generated by a link waveguide (red circle)
connecting two neighboring site resonators (black and blue circles) as shown in (b). When gain and loss are involved in link
waveguides, the required asymmetric hopping can be realized.

where dx = t1 + (t2 + t3) cos(k) and dy = (t2 − t3) sin(k) with t1, t2, t3 and γ being real parameters describing the
corresponding hopping strength.

To show that NHABC has significant effects, we consider two typical cases with t1 = 2, t2 = 1, t3 = 0.8 and
γ = 4/3, and t1 = 2, t2 = 1, t3 = 0 and γ = 4/3. The system exhibits non-Hermitian skin effects under open
boundary conditions since the energy spectra in the complex plane in momentum space [see Fig. S1(a2) and (b2)]
have nonzero winding. Figure S1(a3) and (b3) further illustrate that the NHABC is also in the order of one in these
systems, similar to the case shown in Fig. 1(a) in the main text for a pseudo-Hermitian Hamiltonian.

S-6. AN EXPERIMENTAL SCHEME WITH COUPLED RESONATOR OPTICAL WAVEGUIDES

To experimentally realize the Hamiltonian (5) with dz = d0 = 0, dx = t0 + t1 cos k and dy = t2 sin k, we first write
down the Hamiltonian in real space

H =
∑
n

[
( |An〉 |Bn〉 )

(
0 at0
bt0 0

)(
〈An|
〈Bn|

)
+ ( |An〉 |Bn〉 )

(
0 atd
btm 0

)(
〈An+1|
〈Bn+1|

)
+( |An+1〉 |Bn+1〉 )

(
0 atm
btd 0

)(
〈An|
〈Bn|

)]
, (S55)

where |An〉 and |Bn〉 denote the state at site A and B in the nth unit cell, respectively, tm = (t1 + t2)/2 and
td = (t1 − t2)/2. To realize the Hamiltonian in coupled-resonator optical waveguides (CROWs), we consider a
configuration for site resonators and link waveguides as illustrated in Fig. S2(a), where A and B sites are interchanged
in positions between two neighboring unit cells to realize the next-nearest neighbor hopping between two neighboring
unit cells. The hopping between two neighboring sites are implemented by coupling two site resonators (denoted by
black and blue circles) with a link waveguide (denoted by a red circle), as shown in Fig. S2(b). In the non-Hermitian
case, the asymmetric hopping between two sites can be realized by applying either gain eh or loss e−h over half circle
for a light travelling in a link waveguide [S7]. For instance, consider a light propagating counterclockwise in a site
resonator and a gain in the upper semicircle and a loss in the lower semicircle in a link waveguide (see Fig. S2(b)).
Such a gain or loss changes the transfer matrix of a link waveguide from left to right by a factor of eh, resulting in
an effective hopping from κ to κeh, where κ refers to the hopping when h = 0. Similarly, the effective hopping from
right to left is modified by a factor of e−h.

The dynamics of a wave function is governed by

i∂t|Ψ〉 = H|Ψ〉+
∑
n

(ωn − ω̄)

(
an|An〉
bn|Bn〉

)
− iγ|Ψ〉, (S56)

where

|Ψ〉 =
∑
n

(
an|An〉
bn|Bn〉

)
(S57)
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with an (bn) denoting the electric field of the light in the A (B) site resonator in the nth unit cell, γ is the global
decay rate of the field, and ωn = ω̄ + δωn represents the resonant frequency of each site resonator. To simulate an
external gradient potential, each site resonator is engineered to have a resonant frequency of ω̄+ δωn with δωn = En.
One can also realize an external ac electric field by controlling local refractive index [S8, S9].

∗ Electronic address: yongxuphy@tsinghua.edu.cn
[S1] Y. Michishita and R. Peters, Phys. Rev. Lett. 124, 196401 (2020).
[S2] Y. Xu, S.-T. Wang, and L.-M. Duan, Phys. Rev. Lett. 118, 045701 (2017).
[S3] K. Kawabata, K. Shiozaki, M. Ueda, and M. Sato, Phys. Rev. X 9, 041015 (2019).
[S4] H. Zhou and J. Y. Lee, Phys. Rev. B 99, 235112 (2019).
[S5] T. E. Lee, Phys. Rev. Lett. 116, 133903 (2016).
[S6] S. Yao and Z. Wang, Phys. Rev. Lett. 121, 086803 (2018).
[S7] S. Longhi, D. Gatti, and G. D. Valle, Sci. Rep. 5, 13376 (2015).
[S8] M. F. Yanik and S. Fan, Phys. Rev. Lett. 92, 083901 (2004).
[S9] S. Longhi, Phys. Rev. E 75, 026606 (2007).

mailto:yongxuphy@tsinghua.edu.cn

	S-1. Relevant Berry curvature in non-Hermitian systems
	A. Expectation value of an observable
	B. Derivation of the semiclassical equations of motion

	S-2. Eigenenergies of the Hamiltonian
	S-3. Effects of non-Hermitian anomalous Berry connection in a flattened Hamiltonian
	S-4. Symmetry constraints on non-Hermitian anomalous Berry connection
	A. Time-reversal symmetry
	B. Inversion symmetry or two-fold rotational symmetry
	C. C2T or PT symmetry

	S-5. Non-Hermitian anomalous Berry connections in other models
	S-6. An experimental scheme with coupled resonator optical waveguides
	References

