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I. EXPANSION OF g(a, b, c) AT b = 0

The function g(a, b, c) for massive case is

g(a, b, c) =
b

4π2

ˆ ∞
0

ds[ln(1 + ea−
√
s2+c2) + ln(1 + e−a−

√
s2+c2)]

+
b

2π2

ˆ ∞
0

ds
∞∑
n=1

[ln(1 + ea−
√
nb+s2+c2) + ln(1 + e−a−

√
nb+s2+c2)], (1)

where a = µβ, b = 2eBβ2, c = mβ. Define an auxiliary function as

f(a, x) = ln(1 + ea−x) + ln(1 + e−a−x), (2)

then g(a, b, c) in Eq. (1) becomes

g(a, b, c) =
b

2π2

ˆ ∞
0

ds

[
1

2
f(a,
√
s2 + c2) +

∞∑
n=1

f(a,
√
nb+ s2 + c2)

]
. (3)

Defining another auxiliary function as

F(z) = f(a,
√
zb+ s2 + c2), (4)

and making use of following Abel-Plana formula,
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1

2
F(0) +

∞∑
n=1

F(n) =
ˆ ∞
0

dtF(t) + i

ˆ ∞
0

dt
F(it)−F(−it)

e2πt − 1
, (5)

we have

g(a, b, c) =
1

2π2

ˆ ∞
0

ds

ˆ ∞
0

dtf(a,
√
t+ s2 + c2)

+
b

2π2
× i
ˆ ∞
0

ds

ˆ ∞
0

dt
1

e2πt − 1

[
f(a,
√
itb+ s2 + c2)− f(a,

√
−itb+ s2 + c2)

]
.

(6)

We can see that the first term in g(a, b, c) is irrelevant to b now. In the following we will

focus on the second term.

Define a third auxiliary function as follows,

F (a, c, x) =

ˆ ∞
0

dsf(a,
√
x2 + s2 + c2), (7)

then g(a, b, c) in Eq. (6) becomes

g(a, b, c) =
1

2π2

ˆ ∞
0

ds

ˆ ∞
0

dtf(a,
√
t+ s2 + c2)+

b

2π2
×i
ˆ ∞
0

dt
F (a, c,

√
itb)− F (a, c,

√
−itb)

e2πt − 1
.

(8)

By the variable transformation y =
√
x2 + s2 in Eq. (7), F (a, c, x) can be rewritten as

F (a, c, x) =

ˆ ∞
|x|

dy
y√

y2 − x2
f(a,

√
y2 + c2). (9)

The factor y/
√
y2 − x2 in the integrand in F (a, x) can be replaced by following Taylor

expansion,
y√

y2 − x2
=
∞∑
n=0

(2n− 1)!!

(2n)!!

x2n

y2n
, (10)

where we have defined (−1)!! = 0!! = 1. Then F (a, x) becomes

F (a, c, x) ≡
∞∑
n=0

(2n− 1)!!

(2n)!!
x2ndn(a, c, x), (11)

where we have defined dn(a, c, x) as

dn(a, c, x) =

ˆ ∞
|x|

dy
1

y2n
f(a,

√
y2 + c2). (12)

Since dn(a, c, x) = dn(a, c,−x), the derivative of dn(a, c, x) with respect to x is
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d′n(a, c, x) = −
|x|
x2n+1

f(a,
√
x2 + c2). (13)

We can expand f(a,
√
x2 + c2) at x = 0 as follows,

f(a,
√
x2 + c2) =

∞∑
k=0

w2k(a, c)x
2k, (14)

then dn(a, c, x) becomes

dn(a, c, x) = |x|
∞∑
k=0

w2k(a, c)
1

2n− 2k − 1
x2k−2n + Cn(a, c), (15)

where Cn(a, c) is independent of x. Now F (a, c, x) in Eq. (11) becomes

F (a, c, x) =
∞∑
n=0

(2n− 1)!!

(2n)!!
Cn(a, c)x

2n, (16)

where we have used
∞∑
n=0

(2n− 1)!!

(2n)!!

1

2n− 2k − 1
= 0, (k = 0, 1, 2, · · · ). (17)

The coefficient Cn(a, c) in Eq. (16) is just the constant term when dn(a, c, x) in expanded

at x = 0. When n > 0, we can rewrite dn(a, c, x) in (12) through integration by parts as

dn(a, c, x) =
2n−2∑
k=0

(2n− k − 2)!

(2n− 1)!

1

x2n−k−1
dk

dxk
f(a,
√
x2 + c2)− lnx

(2n− 1)!

d2n−1

dx2n−1
f(a,
√
x2 + c2)

− 1

(2n− 1)!

ˆ ∞
x

dy ln y
d2n

dy2n
f(a,

√
y2 + c2). (18)

which implies

Cn(a, c) = −
1

(2n− 1)!

ˆ ∞
0

dy ln y
d2n

dy2n
f(a,

√
y2 + c2). (19)

When n = 0, we have

C0(a, c) =

ˆ ∞
0

dyf(a,
√
y2 + c2). (20)

Substituting Eq. (16) into Eq. (8) gives

g(a, b, c) =
1

2π2

ˆ ∞
0

ds

ˆ ∞
0

dtf(a,
√
t+ s2 + c2)− 1

π2

∞∑
n=0

(4n+ 1)!!

(4n+ 4)!!
B2n+2C2n+1(a, c)b

2n+2,

(21)
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where we have used following integrations,ˆ ∞
0

dt
t2n+1

e2πt − 1
= (−1)n B2n+2

4n+ 4
, (n > 0), (22)

with Bernoulli numbers Bn defined as

t

et − 1
=
∞∑
n=0

Bn

n!
tn. (23)

II. ASYMPTOTIC BEHAVIORS OF Cn(a, c) (n > 1) AT c = 0

The expression of Cn(a, c) (n > 1) in Eq. (19) is

Cn(a, c) = −
1

(2n− 1)!

ˆ ∞
0

dy ln y
d2n

dy2n
f(a,

√
y2 + c2), (24)

where f(a, x) = ln(1 + ea−x) + ln(1 + e−a−x). Making use of integration by parts, Eq. (24)

becomes

Cn(a, c) =
1

(2n− 1)!

ˆ ∞
0

dy ln y
d2n−1

dy2n−1

[(
1

e
√
y2+c2−a + 1

+
1

e
√
y2+c2+a + 1

)
y√

y2 + c2

]

= − 1

(2n− 1)!

ˆ ∞
0

dy
1

y

d2n−2

dy2n−2

[(
1

e
√
y2+c2−a + 1

+
1

e
√
y2+c2+a + 1

)
y√

y2 + c2

]
,

(25)

where the second equal sign is valid for n > 1 with an arbitrary c, and for n = 1 with c 6= 0.

When c = 0, Eq. (25) becomes

Cn(a, 0) = −
1

(2n− 1)!

ˆ ∞
0

dy
1

y

d2n−2

dy2n−2

(
1

ey−a + 1
+

1

ey+a + 1

)
. (26)

The expression in the bracket in the integrand can be expanded at y = 0 as follows,

1

ey−a + 1
+

1

ey+a + 1
= 1 +#y +#y3 +#y5 + · · · , (27)

with “#” representing some coefficients. The expansion in Eq. (27) implies that, Cn(a, 0) is

divergent for n = 1, and convergent for n > 1. Further analysis shows that

∂

∂c
Cn(a, c)

∣∣∣∣
c→0

=∞. (28)

We may conclude that, the asymptotic behaviors of Cn(a, c) at c = 0 is

C1(a, c) ∼ # ln c+ (terms regular at c = 0), (29)

Cn(a, c) ∼ #c ln c+ (terms regular at c = 0), (n > 1). (30)
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III. EXPANSION OF C1(a, c) AT c = 0

When n = 1, Eq. (25) becomes

C1(a, c) = −
ˆ ∞
0

dy
1√

y2 + c2

(
1

e
√
y2+c2−a + 1

+
1

e
√
y2+c2+a + 1

)
. (31)

Making use of the variable transformation, x = (y2+ c2)1/2, the expression of C1(a, c) in Eq.

(31) is equivalent to

C1(a, c) = −
ˆ ∞
|c|

dx
1

x

(
1− c2

x2

)− 1
2
(

1

ex−a + 1
+

1

ex+a + 1

)
. (32)

Since x2 > c2, we can use the Taylor expansion for (1− c2/x2)−1/2 in Eq. (10), leading to

C1(a, c) = −
∞∑
n=0

(2n− 1)!!

(2n)!!
c2nXn(a, c), (33)

where Xn(a, c) can be written as follows,

Xn(a, c) =

ˆ ∞
|c|

dx

[
1

x2n+1

(
1

ex−a + 1
+

1

ex+a + 1
− 1

)
+

1

x2n+1

]
. (34)

The derivative of Xn(a, c) with respect to c is

X ′n(a, c) = −
|c|
c2n+2

(
1

ec−a + 1
+

1

ec+a + 1
− 1

)
− 1

c2n+1
. (35)

The term in the bracket in Eq. (35) is an odd function of c which can be expanded at c = 0

as
1

ec−a + 1
+

1

ec+a + 1
− 1 =

∞∑
k=0

J2k+1(a)c
2k+1, (36)

then Xn(a, c) can be obtained from X ′n(a, c),

Xn(a, c) = −|c|
∞∑
k=0

J2k+1(a)
1

2k − 2n+ 1
c2k−2n +

 D0(a)− 1
2
ln c2, n = 0

Dn(a) +
1
2n
c−2n, n > 0

, (37)

where Dn(a) are independent of c and can be determined by the same method as the calcu-

lation of Cn(a, c) in Sec. I. The result of Dn(a) is

Dn(a) = −
1

(2n)!

ˆ ∞
0

dx lnx
d2n+1

dx2n+1

(
1

ex−a + 1
+

1

ex+a + 1

)
. (38)
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Taking use of
∞∑
n=0

(2n− 1)!!

(2n)!!

1

2n− 2k − 1
= 0, (k = 0, 1, 2, · · · ), (39)

∞∑
n=1

(2n− 1)!!

(2n)!!

1

n
= ln 4, (40)

we get

C1(a, c) =
1

2
ln c2 − [D0(a) + ln 2]−

∞∑
n=1

(2n− 1)!!

(2n)!!
Dn(a)c

2n. (41)

which is consistent with the asymptotic analysis in Eq. (29).

According to the Appendix D in [1], Dn(a) can be expanded at a = 0 as follows,

Dn(a) = (− ln 4− γ)δn,0 −
2

(2n)!

∞∑
k=0

(
22n+2k+1 − 1

)
ζ ′(−2n− 2k)

a2k

(2k)!
. (42)

[1] C. Zhang, R.-H. Fang, J.-H. Gao, and D.-F. Hou, Phys. Rev. D 102, 056004 (2020), 2005.08512.


