Supplemental Material: Thermodynamics of the system of massive Dirac fermions in a uniform magnetic field

Ren-Hong Fang, ${ }^{1}$ Ren-Da Dong, ${ }^{2}$ De-Fu Hou, ${ }^{2, *}$ and Bao-Dong Sun ${ }^{1, \dagger}$
${ }^{1}$ Key Laboratory of Particle Physics and Particle Irradiation (MOE), Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
${ }^{2}$ Institute of Particle Physics and Key Laboratory of Quark and Lepton Physics (MOS), Central China Normal University, Wuhan 430079, China

I. EXPANSION OF $g(a, b, c)$ AT $b=0$

The function $g(a, b, c)$ for massive case is

$$
\begin{align*}
g(a, b, c)= & \frac{b}{4 \pi^{2}} \int_{0}^{\infty} d s\left[\ln \left(1+e^{a-\sqrt{s^{2}+c^{2}}}\right)+\ln \left(1+e^{-a-\sqrt{s^{2}+c^{2}}}\right)\right] \\
& +\frac{b}{2 \pi^{2}} \int_{0}^{\infty} d s \sum_{n=1}^{\infty}\left[\ln \left(1+e^{a-\sqrt{n b+s^{2}+c^{2}}}\right)+\ln \left(1+e^{-a-\sqrt{n b+s^{2}+c^{2}}}\right)\right] \tag{1}
\end{align*}
$$

where $a=\mu \beta, b=2 e B \beta^{2}, c=m \beta$. Define an auxiliary function as

$$
\begin{equation*}
f(a, x)=\ln \left(1+e^{a-x}\right)+\ln \left(1+e^{-a-x}\right), \tag{2}
\end{equation*}
$$

then $g(a, b, c)$ in Eq. (1) becomes

$$
\begin{equation*}
g(a, b, c)=\frac{b}{2 \pi^{2}} \int_{0}^{\infty} d s\left[\frac{1}{2} f\left(a, \sqrt{s^{2}+c^{2}}\right)+\sum_{n=1}^{\infty} f\left(a, \sqrt{n b+s^{2}+c^{2}}\right)\right] . \tag{3}
\end{equation*}
$$

Defining another auxiliary function as

$$
\begin{equation*}
\mathcal{F}(z)=f\left(a, \sqrt{z b+s^{2}+c^{2}}\right), \tag{4}
\end{equation*}
$$

and making use of following Abel-Plana formula,

[^0]\[

$$
\begin{equation*}
\frac{1}{2} \mathcal{F}(0)+\sum_{n=1}^{\infty} \mathcal{F}(n)=\int_{0}^{\infty} d t \mathcal{F}(t)+i \int_{0}^{\infty} d t \frac{\mathcal{F}(i t)-\mathcal{F}(-i t)}{e^{2 \pi t}-1} \tag{5}
\end{equation*}
$$

\]

we have

$$
\begin{align*}
g(a, b, c)= & \frac{1}{2 \pi^{2}} \int_{0}^{\infty} d s \int_{0}^{\infty} d t f\left(a, \sqrt{t+s^{2}+c^{2}}\right) \\
& +\frac{b}{2 \pi^{2}} \times i \int_{0}^{\infty} d s \int_{0}^{\infty} d t \frac{1}{e^{2 \pi t}-1}\left[f\left(a, \sqrt{i t b+s^{2}+c^{2}}\right)-f\left(a, \sqrt{-i t b+s^{2}+c^{2}}\right)\right] . \tag{6}
\end{align*}
$$

We can see that the first term in $g(a, b, c)$ is irrelevant to b now. In the following we will focus on the second term.

Define a third auxiliary function as follows,

$$
\begin{equation*}
F(a, c, x)=\int_{0}^{\infty} d s f\left(a, \sqrt{x^{2}+s^{2}+c^{2}}\right), \tag{7}
\end{equation*}
$$

then $g(a, b, c)$ in Eq. (6) becomes

$$
\begin{equation*}
g(a, b, c)=\frac{1}{2 \pi^{2}} \int_{0}^{\infty} d s \int_{0}^{\infty} d t f\left(a, \sqrt{t+s^{2}+c^{2}}\right)+\frac{b}{2 \pi^{2}} \times i \int_{0}^{\infty} d t \frac{F(a, c, \sqrt{i t b})-F(a, c, \sqrt{-i t b})}{e^{2 \pi t}-1} . \tag{8}
\end{equation*}
$$

By the variable transformation $y=\sqrt{x^{2}+s^{2}}$ in Eq. (7), $F(a, c, x)$ can be rewritten as

$$
\begin{equation*}
F(a, c, x)=\int_{|x|}^{\infty} d y \frac{y}{\sqrt{y^{2}-x^{2}}} f\left(a, \sqrt{y^{2}+c^{2}}\right) . \tag{9}
\end{equation*}
$$

The factor $y / \sqrt{y^{2}-x^{2}}$ in the integrand in $F(a, x)$ can be replaced by following Taylor expansion,

$$
\begin{equation*}
\frac{y}{\sqrt{y^{2}-x^{2}}}=\sum_{n=0}^{\infty} \frac{(2 n-1)!!}{(2 n)!!} \frac{x^{2 n}}{y^{2 n}} \tag{10}
\end{equation*}
$$

where we have defined $(-1)!!=0!!=1$. Then $F(a, x)$ becomes

$$
\begin{equation*}
F(a, c, x) \equiv \sum_{n=0}^{\infty} \frac{(2 n-1)!!}{(2 n)!!} x^{2 n} d_{n}(a, c, x), \tag{11}
\end{equation*}
$$

where we have defined $d_{n}(a, c, x)$ as

$$
\begin{equation*}
d_{n}(a, c, x)=\int_{|x|}^{\infty} d y \frac{1}{y^{2 n}} f\left(a, \sqrt{y^{2}+c^{2}}\right) . \tag{12}
\end{equation*}
$$

Since $d_{n}(a, c, x)=d_{n}(a, c,-x)$, the derivative of $d_{n}(a, c, x)$ with respect to x is

$$
\begin{equation*}
d_{n}^{\prime}(a, c, x)=-\frac{|x|}{x^{2 n+1}} f\left(a, \sqrt{x^{2}+c^{2}}\right) . \tag{13}
\end{equation*}
$$

We can expand $f\left(a, \sqrt{x^{2}+c^{2}}\right)$ at $x=0$ as follows,

$$
\begin{equation*}
f\left(a, \sqrt{x^{2}+c^{2}}\right)=\sum_{k=0}^{\infty} w_{2 k}(a, c) x^{2 k} \tag{14}
\end{equation*}
$$

then $d_{n}(a, c, x)$ becomes

$$
\begin{equation*}
d_{n}(a, c, x)=|x| \sum_{k=0}^{\infty} w_{2 k}(a, c) \frac{1}{2 n-2 k-1} x^{2 k-2 n}+C_{n}(a, c), \tag{15}
\end{equation*}
$$

where $C_{n}(a, c)$ is independent of x. Now $F(a, c, x)$ in Eq. (11) becomes

$$
\begin{equation*}
F(a, c, x)=\sum_{n=0}^{\infty} \frac{(2 n-1)!!}{(2 n)!!} C_{n}(a, c) x^{2 n} \tag{16}
\end{equation*}
$$

where we have used

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{(2 n-1)!!}{(2 n)!!} \frac{1}{2 n-2 k-1}=0, \quad(k=0,1,2, \cdots) \tag{17}
\end{equation*}
$$

The coefficient $C_{n}(a, c)$ in Eq. (16) is just the constant term when $d_{n}(a, c, x)$ in expanded at $x=0$. When $n>0$, we can rewrite $d_{n}(a, c, x)$ in (12) through integration by parts as

$$
\begin{align*}
d_{n}(a, c, x)= & \sum_{k=0}^{2 n-2} \frac{(2 n-k-2)!}{(2 n-1)!} \frac{1}{x^{2 n-k-1}} \frac{d^{k}}{d x^{k}} f\left(a, \sqrt{x^{2}+c^{2}}\right)-\frac{\ln x}{(2 n-1)!} \frac{d^{2 n-1}}{d x^{2 n-1}} f\left(a, \sqrt{x^{2}+c^{2}}\right) \\
& -\frac{1}{(2 n-1)!} \int_{x}^{\infty} d y \ln y \frac{d^{2 n}}{d y^{2 n}} f\left(a, \sqrt{y^{2}+c^{2}}\right) . \tag{18}
\end{align*}
$$

which implies

$$
\begin{equation*}
C_{n}(a, c)=-\frac{1}{(2 n-1)!} \int_{0}^{\infty} d y \ln y \frac{d^{2 n}}{d y^{2 n}} f\left(a, \sqrt{y^{2}+c^{2}}\right) . \tag{19}
\end{equation*}
$$

When $n=0$, we have

$$
\begin{equation*}
C_{0}(a, c)=\int_{0}^{\infty} d y f\left(a, \sqrt{y^{2}+c^{2}}\right) \tag{20}
\end{equation*}
$$

Substituting Eq. (16) into Eq. (8) gives

$$
\begin{equation*}
g(a, b, c)=\frac{1}{2 \pi^{2}} \int_{0}^{\infty} d s \int_{0}^{\infty} d t f\left(a, \sqrt{t+s^{2}+c^{2}}\right)-\frac{1}{\pi^{2}} \sum_{n=0}^{\infty} \frac{(4 n+1)!!}{(4 n+4)!!} \mathscr{B}_{2 n+2} C_{2 n+1}(a, c) b^{2 n+2} \tag{21}
\end{equation*}
$$

where we have used following integrations,

$$
\begin{equation*}
\int_{0}^{\infty} d t \frac{t^{2 n+1}}{e^{2 \pi t}-1}=(-1)^{n} \frac{\mathscr{B}_{2 n+2}}{4 n+4}, \quad(n \geqslant 0) \tag{22}
\end{equation*}
$$

with Bernoulli numbers \mathscr{B}_{n} defined as

$$
\begin{equation*}
\frac{t}{e^{t}-1}=\sum_{n=0}^{\infty} \frac{\mathscr{B}_{n}}{n!} t^{n} . \tag{23}
\end{equation*}
$$

II. ASYMPTOTIC BEHAVIORS OF $C_{n}(a, c)(n \geqslant 1)$ AT $c=0$

The expression of $C_{n}(a, c)(n \geqslant 1)$ in Eq. (19) is

$$
\begin{equation*}
C_{n}(a, c)=-\frac{1}{(2 n-1)!} \int_{0}^{\infty} d y \ln y \frac{d^{2 n}}{d y^{2 n}} f\left(a, \sqrt{y^{2}+c^{2}}\right) \tag{24}
\end{equation*}
$$

where $f(a, x)=\ln \left(1+e^{a-x}\right)+\ln \left(1+e^{-a-x}\right)$. Making use of integration by parts, Eq. (24) becomes

$$
\begin{align*}
C_{n}(a, c) & =\frac{1}{(2 n-1)!} \int_{0}^{\infty} d y \ln y \frac{d^{2 n-1}}{d y^{2 n-1}}\left[\left(\frac{1}{e^{\sqrt{y^{2}+c^{2}}-a}+1}+\frac{1}{e^{\sqrt{y^{2}+c^{2}}+a}+1}\right) \frac{y}{\sqrt{y^{2}+c^{2}}}\right] \\
& =-\frac{1}{(2 n-1)!} \int_{0}^{\infty} d y \frac{1}{y} \frac{d^{2 n-2}}{d y^{2 n-2}}\left[\left(\frac{1}{e^{\sqrt{y^{2}+c^{2}}-a}+1}+\frac{1}{e^{\sqrt{y^{2}+c^{2}}+a}+1}\right) \frac{y}{\sqrt{y^{2}+c^{2}}}\right], \tag{25}
\end{align*}
$$

where the second equal sign is valid for $n>1$ with an arbitrary c, and for $n=1$ with $c \neq 0$.
When $c=0$, Eq. (25) becomes

$$
\begin{equation*}
C_{n}(a, 0)=-\frac{1}{(2 n-1)!} \int_{0}^{\infty} d y \frac{1}{y} \frac{d^{2 n-2}}{d y^{2 n-2}}\left(\frac{1}{e^{y-a}+1}+\frac{1}{e^{y+a}+1}\right) . \tag{26}
\end{equation*}
$$

The expression in the bracket in the integrand can be expanded at $y=0$ as follows,

$$
\begin{equation*}
\frac{1}{e^{y-a}+1}+\frac{1}{e^{y+a}+1}=1+\# y+\# y^{3}+\# y^{5}+\cdots \tag{27}
\end{equation*}
$$

with "\#" representing some coefficients. The expansion in Eq. (27) implies that, $C_{n}(a, 0)$ is divergent for $n=1$, and convergent for $n>1$. Further analysis shows that

$$
\begin{equation*}
\left.\frac{\partial}{\partial c} C_{n}(a, c)\right|_{c \rightarrow 0}=\infty \tag{28}
\end{equation*}
$$

We may conclude that, the asymptotic behaviors of $C_{n}(a, c)$ at $c=0$ is

$$
\begin{gather*}
C_{1}(a, c) \sim \# \ln c+(\text { terms regular at } c=0) \tag{29}\\
C_{n}(a, c) \sim \# c \ln c+(\text { terms regular at } c=0), \quad(n>1) \tag{30}
\end{gather*}
$$

III. EXPANSION OF $C_{1}(a, c)$ AT $c=0$

When $n=1$, Eq. (25) becomes

$$
\begin{equation*}
C_{1}(a, c)=-\int_{0}^{\infty} d y \frac{1}{\sqrt{y^{2}+c^{2}}}\left(\frac{1}{e^{\sqrt{y^{2}+c^{2}}-a}+1}+\frac{1}{e^{\sqrt{y^{2}+c^{2}}+a}+1}\right) \tag{31}
\end{equation*}
$$

Making use of the variable transformation, $x=\left(y^{2}+c^{2}\right)^{1 / 2}$, the expression of $C_{1}(a, c)$ in Eq. (31) is equivalent to

$$
\begin{equation*}
C_{1}(a, c)=-\int_{|c|}^{\infty} d x \frac{1}{x}\left(1-\frac{c^{2}}{x^{2}}\right)^{-\frac{1}{2}}\left(\frac{1}{e^{x-a}+1}+\frac{1}{e^{x+a}+1}\right) . \tag{32}
\end{equation*}
$$

Since $x^{2}>c^{2}$, we can use the Taylor expansion for $\left(1-c^{2} / x^{2}\right)^{-1 / 2}$ in Eq. (10), leading to

$$
\begin{equation*}
C_{1}(a, c)=-\sum_{n=0}^{\infty} \frac{(2 n-1)!!}{(2 n)!!} c^{2 n} X_{n}(a, c) \tag{33}
\end{equation*}
$$

where $X_{n}(a, c)$ can be written as follows,

$$
\begin{equation*}
X_{n}(a, c)=\int_{|c|}^{\infty} d x\left[\frac{1}{x^{2 n+1}}\left(\frac{1}{e^{x-a}+1}+\frac{1}{e^{x+a}+1}-1\right)+\frac{1}{x^{2 n+1}}\right] \tag{34}
\end{equation*}
$$

The derivative of $X_{n}(a, c)$ with respect to c is

$$
\begin{equation*}
X_{n}^{\prime}(a, c)=-\frac{|c|}{c^{2 n+2}}\left(\frac{1}{e^{c-a}+1}+\frac{1}{e^{c+a}+1}-1\right)-\frac{1}{c^{2 n+1}} . \tag{35}
\end{equation*}
$$

The term in the bracket in Eq. (35) is an odd function of c which can be expanded at $c=0$ as

$$
\begin{equation*}
\frac{1}{e^{c-a}+1}+\frac{1}{e^{c+a}+1}-1=\sum_{k=0}^{\infty} J_{2 k+1}(a) c^{2 k+1}, \tag{36}
\end{equation*}
$$

then $X_{n}(a, c)$ can be obtained from $X_{n}^{\prime}(a, c)$,

$$
X_{n}(a, c)=-|c| \sum_{k=0}^{\infty} J_{2 k+1}(a) \frac{1}{2 k-2 n+1} c^{2 k-2 n}+\left\{\begin{array}{cc}
D_{0}(a)-\frac{1}{2} \ln c^{2}, & n=0 \tag{37}\\
D_{n}(a)+\frac{1}{2 n} c^{-2 n}, & n>0
\end{array}\right.
$$

where $D_{n}(a)$ are independent of c and can be determined by the same method as the calculation of $C_{n}(a, c)$ in Sec. I. The result of $D_{n}(a)$ is

$$
\begin{equation*}
D_{n}(a)=-\frac{1}{(2 n)!} \int_{0}^{\infty} d x \ln x \frac{d^{2 n+1}}{d x^{2 n+1}}\left(\frac{1}{e^{x-a}+1}+\frac{1}{e^{x+a}+1}\right) \tag{38}
\end{equation*}
$$

Taking use of

$$
\begin{gather*}
\sum_{n=0}^{\infty} \frac{(2 n-1)!!}{(2 n)!!} \frac{1}{2 n-2 k-1}=0, \quad(k=0,1,2, \cdots) \tag{39}\\
\sum_{n=1}^{\infty} \frac{(2 n-1)!!}{(2 n)!!} \frac{1}{n}=\ln 4 \tag{40}
\end{gather*}
$$

we get

$$
\begin{equation*}
C_{1}(a, c)=\frac{1}{2} \ln c^{2}-\left[D_{0}(a)+\ln 2\right]-\sum_{n=1}^{\infty} \frac{(2 n-1)!!}{(2 n)!!} D_{n}(a) c^{2 n} . \tag{41}
\end{equation*}
$$

which is consistent with the asymptotic analysis in Eq. (29).
According to the Appendix D in [1], $D_{n}(a)$ can be expanded at $a=0$ as follows,

$$
\begin{equation*}
D_{n}(a)=(-\ln 4-\gamma) \delta_{n, 0}-\frac{2}{(2 n)!} \sum_{k=0}^{\infty}\left(2^{2 n+2 k+1}-1\right) \zeta^{\prime}(-2 n-2 k) \frac{a^{2 k}}{(2 k)!} \tag{42}
\end{equation*}
$$

[1] C. Zhang, R.-H. Fang, J.-H. Gao, and D.-F. Hou, Phys. Rev. D 102, 056004 (2020), 2005.08512.

[^0]: *Electronic address: houdf@mail.ccnu.edu.cn
 ${ }^{\dagger}$ Electronic address: sunbd@sdu.edu. cn

