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Here we provide a systematic description of details on computational methods used in the present
work and additional details supporting several results presented in the main text.

DETAILS ON COMPUTATIONAL METHODS

The first-principles energetic calculations and stress-
strain relations reported in this work have been carried
out using the VASP code [1], adopting the projector
augmented wave (PAW) approach [2] with the valence
electron configuration of s2p2 for both silicon and car-
bon, which are each described by an eight-atom unit
cell. The local density approximation (LDA) has been
used to describe the exchange and correlation potential
between electrons as parametrized by the Ceperley and
Alder functional [3]. An energy cutoff of 500 eV for Si
and 800 eV for SiC and a Monkhorst-Pack grid [4] with a
maximum spacing of 0.18 Å−1 are adopted, achieving an
energy convergence around 1 meV per atom with residual
forces and stresses less than 0.005 eVÅ−1 and 0.1 GPa,
respectively. Electronic band gaps are determined by cal-
culations using the hybrid functional of Heyd-Scuseria-
Ernzerhof (HSE) [5, 6], and the resulted band gaps for Si
and SiC are 1.13 eV and 2.35 eV, respectively, which are
in excellent agreement with experimental data [7, 8]. On
this basis, the HSE band gaps for the deformed Si and
SiC crystals are expected to provide a good description
for strain induced band-gap modulations, especially the
band-gap closure that signals the onset of metallization
in each case.

Stress-strain relations under diverse loading conditions
are calculated under a biaxial stress state that contains
a shear stress and a normal compressive or tensile stress
component. This approach covers the pure shear case in
the limit of zero normal stress and simulates a rich variety
of loading environments containing various biaxial stress
states [9–11]. The shape of the deformed unit cell and
atomic relaxation are determined completely at each step
by the constrained structural optimization. The starting
position for each strain step is taken from the relaxed
coordinates of the previous strain step to ensure the qua-
sistatic strain path, with a strain increment of 0.01 in
each of the first five steps, which are in mostly linear
elastic range, and then 0.005 for each subsequent steps.
At each step, the applied shear strain is fixed to deter-
mine the shear stress σxz, while the other five indepen-
dent components of the strain tensors and all the atoms
inside the unit cell are simultaneously relaxed until the

normal stress component (σzz) reaches a specified value,
namely σzz = σxztanφ or σzz = c, where φ is an angu-
lar variable to adjust the ratio of the normal and shear
components of the biaxial stress and c is a constant nor-
mal compressive or tensile stress. Meanwhile, all other
four components of the Hellmann-Feynman stress tensor
and the force on each atom become negligibly small after
the full relaxation, typically less than 0.1 GPa and 0.005
eV·Å−1, respectively. In this work, we have examined Si
under diverse shear strains, including pure shear (PS),
variable constrained shear (CS) with φ=68◦ correspond-
ing to the prominent Vickers shear stress state [9–11],
and constant tensile shear (TS) with c = 10 GPa, and
SiC under PS stress condition.

Lattice dynamics and electron-phonon coupling behav-
iors have been calculated using the density-functional
perturbation theory (DFPT) in linear response as imple-
mented in the Quantum Expresso code [12], adopting a
kinetic energy cutoff of 40 Ry and 70 Ry for Si and SiC,
respectively. A k-mesh of 16×16×24 was used for the
electronic calculations and a 4×4×6 q-mesh for the lat-
tice dynamics calculations to achieve good convergence.
Dynamic stability of deformed crystals was determined
by checking for the absence of imaginary phonon modes,
and the electron-phonon coupling (EPC) behaviors were
evaluated and superconductivity assessed up to the high-
est strain for the dynamically stable structure on each
chosen deformation path.

Phonon calculations in this work are performed with-
out considering anharmonic effects. The stress-strain
curves are determined by quasistatic structural optimiza-
tion following the standard procedure, where stress is
calculated by taking the derivative of the energy of the
strained crystal with respect to strain. Phonon calcu-
lations within the harmonic approximation are subse-
quently performed to check the dynamic stability along
specific deformation paths. Anharmonic effects could in-
fluence the dynamic stability of the deformed structure,
thus affect the stable strain range of the stress-strain
curve. It is noted, however, that anharmonicity is ap-
preciable at high temperatures [13]. In this work, the
superconducting states of deformed Si and SiC emerge
at very low temperatures (below 10 K) and, therefore,
no significant anharmonicity is expected. Moreover, re-
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FIG. S1: Stress response under various shear-strain condi-
tions. (a) Si under pure shear (PS), (b) Si under constrained
shear (CS) and (c) SiC under PS strains. Specific shear slip
directions are listed in each panel, and the most flattened
curves, i.e., Si PS (111)[11-2], Si CS (11-2)[111] and SiC PS
(111)[11-2], which represent the most favorable cases for met-
allization, are selected as shown in the main text. Covalent
solids like diamond and Si host strongly directional bonding
configurations, generating highly anisotropic stress responses.
In this work, our goal is to explore strain-induced metallic and
superconducting structure in Si; we therefore have mostly fo-
cused on stress responses along the (111)[11-2] PS and several
closely related deformation paths. For comparison, we also
show the shear-strain curve under the (110)[001] PS strain
that exhibits a steeper rise of stress, which is commonly seen
in covalent solids.

FIG. S2: Electronic band gap from HSE calculations under
various shear-strain conditions. (a) Si PS (111)[11-2], (b) Si
CS (11-2)[111], (c) Si TS (111)[11-2], (d) SiC PS (111)[11-2].
Results at selected strain points are shown.

FIG. S3: The evolution of normalized (to the values of the
unstrained crystal) lattice spacing between the (001) planes
(d001), the unit-cell area of the (001) plane and the unit-cell
volume of Si under the (111)[11-2] PS strains. In the tetrahe-
drally bonded environment of Si crystal lattice, each Si atom
has a large void site aligned opposite to one of its nearest-
neighbor atoms [22]. The void positions and Si atom posi-
tions can be viewed as two face-center-cubic sublattices in
the crystal structure. Under large deformations, such as the
(111)[11-2] PS strains, a large angular expansion mode along
with relatively small bond elongations causes a prominent
contraction of the lattice spacing between the (001) planes,
which is steeper than the expansion of the area of the (001)
planes, leading to the reduced volume of the void, and thus
an overall reduction of volume for the deformed crystal.
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FIG. S4: Calculated logarithmic average phonon frequencies
as a function of strain for Si under the (111)[11-2] PS defor-
mation mode. There is a clear relation between the flattening
of the stress-strain curve, which reflects the weakening of the
bonding interaction in the deformed crystal, and a sharp and
steady decline of the logarithmic average phonon frequencies
in the (super)conducting phase of Si.

FIG. S5: Stress response of Si under (111) tensile strain. A
point at 6% strain with a stress of 10 GPa near the middle of
the elastic range, is selected as a representative condition for
the evaluation of Si under the TS (111)[11-2] strains.

cent study shows that Si and diamond have the lowest
degree of anharmonicity among all the crystals [14]. SiC
involves the same two elements in the same crystal struc-
ture and is therefore expected to possess a similarly low
level of degree of anharmonicity. Further, recent exper-
iments demonstrated that nearly defect-free silicon and
diamond nanostructures can approach theoretical strain
and stress limits [15–20]. These studies show that achiev-
ing theoretically predicted large structural deformation is
feasible. Overall, we expect that anharmonic effects will
not have any appreciable impact on the main conclusions
of our reported work.

Previous research revealed that anharmonic effect

FIG. S6: Electronic band structures of (a, b) Si under the (11-
2)[111] CS strains, (c, d) Si under the (111)[11-2] TS strains,
and (e, f) SiC under the (111)[11-2] PS strains. These re-
sults show clear trends of shear strain driven increase of band
crossing at the Fermi level, similar to the results for Si under
the (111)[11-2] PS strains shown in Figs. 2(c) and 2(d).

FIG. S7: Mesh convergence test for the calculated coupling
integral λ(ω) at selected PS strain of 0.49 in deformed SiC.
An 8-atoms cell is used in the calculations for electron-phonon
coupling parameter. The calculated coupling integral λ(ω)
at ε=0.49 with 4×4×6 and 5×5×7 q mesh generates 34 and
54 irreducible q points, respectively. The calculations with
the distinct q-mesh choices yield nearly identical integrated λ
values and Tc values, confirming that the q-mesh of 4×4×6
used in the present work is adequate to provide a reliable
description for the phonon-mediated superconductivity.
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could eliminate imaginary phonon modes and stabilize
crystal structure that is dynamically unstable according
to phonon calculations under harmonic approximation
[21]. Such effects could impact structural stability of
crystals under large strains, possibly leading to increased
strain range and enhanced physical properties such as
metallicity and superconductivity, especially in materials
that host large anharmonicity. Further investigationsare
required for a full understanding of this important and
intricate topic.
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