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(I) The equality between tot and   

 

Fig. S1. Examples of simulated dispersion, imaginary part   and total decay 

rate tot=rad+abs. The wave vectors are chosen ky=0 and ky=0.2 in the left and right 

panels, respectively. The total decay rate tot radabs coincides with  . 

 

In Fig. 1(e) of the main text, we only show the imaginary part of the eigenfrequency 

  and claim that total decay rate tot=rad+abs and   of the resonance modes are 

coincident. Here, a numerical verification of tot always coincide with   is shown 

in Fig. S1. We take the resonance modes on the TE-like band but with different wave 
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vectors as an example. Dispersion of TE-like band with ky=0 and ky=0.2 are shown in 

Figs. S1(a) and S1(b), respectively. In Figs. S1(c) and S1(d), we plot   and the 

total decay rate tot of the resonance modes, which is coincides with each other. 

 

 

 

(II) Pt-BICs and lasing threshold modes at small PT-symmetric perturbation 

 
 

Fig. S2. Decay rates calculated from COMSOL Multiphysics. The imaginary 

part, absorption and radiation rate of resonance modes for =(a-b) and =(c-e). 

The intersections of curve rad and abs
 
with rad=abs=0 correspond to pt-BICs 

(black symbols). The other three with finite rad correspond to the lasing threshold 

modes (red symbols). Three zoom-in boxes in (e) correspond to the open rectangular 

regions shown in (d).  

 

When a small PT-symmetric perturbation is introduced into the system, the 

splitting of an ordinary BIC into a pair of pt-BIC and a lasing threshold mode also 

exists. For a system without gain and loss, there exists three pt-BICs with =0  as 

shown in Fig. S2(a). The radiation rate rad is semi-positive definite and the absorption 

rate abs along the kx axis is always zero, therefore, rad=0 correspond to BICs. When 

the system is perturbed by PT symmetry, abs fluctuates around zero along the kx axis. 

abs can intersect with the curves of rad at other three points as shown in Fig. S2(c-e), 

which is close to three BICs. The three intersections with rad=abs≠0 correspond to 

the lasing threshold modes (red symbols in Fig. S2(e)), at which the radiation loss is 

exactly balanced by the net gain. 
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(III) Behaviors of Q factor near other pt-BICs  

 
Fig. S3. (a-b) Lasing threshold modes (red lines) and pt-BICs (black dots) on the 

TE-like band as shown in the kx-ky plane. The Q factors near pt-BICs point at (kx0, 

ky0)=(0.188, 0) and (0.035, 0.112) are shown in (c) and (d), respectively. (c) For 

=/2, the Q factor diverges at the rate of 
2

yk 
, while at the rate of 1

xk   for =0. (d) 

When the pt-BIC appear at off-high symmetry lines, the Q factor diverges at the rate 

of 
2

0 0[ cos + sin ]x yk k    
 along the tangential direction of the corresponding ring 

at the point of pt-BIC. The divergence rate of Q factor becomes 
1

0 0[ sin + cos ]x yk k      along the normal direction (=0). 

 

Here, we also show the divergence behaviors of Q factor near the other pt-BICs. 

In Fig. S3(a), we take the pt-BIC point at (kx0, ky0)=(0.188, 0) as the origin of 

coordinates and  is the included angle between negative x direction and dashed line. 

For any arbitrary direction, we define kx=kxkx0=|k|cos and ky= kyky0=k|sin. 

The Q factors along the dashed line with different included angle  close to pt-BIC 

are shown in Fig. S3(c). For =,   crosses zero linearly near a pt-BIC and 

xk   is not zero. Therefore, 
xk    and the Q factor is proportional to 1

xk  . 

However, for =/2, the linear term vanishes and 
2

yk   , hence the Q factor carries 

a completely different Q-factor divergence rate, i.e., 
2Q yk  . The divergence rate 

of Q factor has the form of 
2 1[ + ]x yc k k  

, where c is a constant to be determined. 
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By fitting the simulated Q factor of resonance modes with this formula, we can 

extract the coefficient c=0.35. 

The pt-BIC at off-high symmetry lines also holds similar anisotropic behavior. 

For convenience, we take the pt-BIC point at (kx0, ky0)=(0.035, 0.112) as origin of 

coordinates as shown in Figs. S3(b). The tangential and normal directions of a ring of 

lasing threshold modes are defined as the coordinate axes of a local coordinate system. 

The local coordinate and the kx-ky coordinate system can be linked by rotation 

operation and we obtain 0=0.472. The Q factors along the dashed line with 

different  close to the pt-BICs are shown in Fig. S3(d). For =/2, the Q factor is 

proportional to 
2

0 0[ cos + sin ]x yk k    
. For the other direction, the divergence rate 

of Q factor becomes 
1

0 0[ sin + cos ]x yk k     . Thus, the divergence rate of Q factor 

has the generic form of 
2 1

0 0 0 0[ ( sin + cos )+( cos + sin ) ]x y x yc k k k k         , 

where c is a constant to be determined. By fitting the simulated Q factor of resonance 

modes with this formula, we can extract the coefficient c=1.95. 

 

 

 


