Supplemental Material for "PT Symmetry Induced Rings of Lasing Threshold Modes Embedded with Discrete Bound States in the Continuum" Qianju Song(宋前举)^{1,†}, Shiwei Dai(戴士为)^{1,†}, Dezhuan Han(韩德专)^{1,*}, Z. Q. Zhang(张昭庆)², C. T. Chan(陈子亭)^{2,*}, and Jian Zi(资剑)^{3,*} ³ Department of Physics, Key Laboratory of Micro- and Nano-Photonic Structures (MOE), and State Key Laboratory of Surface Physics, Fudan University, Shanghai 200433, China E-mail addresses: dzhan@cqu.edu.cn (D. Z. Han), phchan@ust.hk (C. T. Chan), and jzi@fudan.edu.cn (J. Zi) ## (I) The equality between γ_{tot} and $-\omega''$ **Fig. S1.** Examples of simulated dispersion, imaginary part ω'' and total decay rate $\gamma_{\text{tot}} = \gamma_{\text{rad}} + \gamma_{\text{abs}}$. The wave vectors are chosen $k_y = 0$ and $k_y = 0.2$ in the left and right panels, respectively. The total decay rate $\gamma_{\text{tot}} = \gamma_{\text{rad}} + \gamma_{\text{abs}}$ coincides with $-\omega''$. In Fig. 1(e) of the main text, we only show the imaginary part of the eigenfrequency ω'' and claim that total decay rate $\gamma_{tot} = \gamma_{rad} + \gamma_{abs}$ and $-\omega''$ of the resonance modes are coincident. Here, a numerical verification of γ_{tot} always coincide with $-\omega''$ is shown in Fig. S1. We take the resonance modes on the TE-like band but with different wave ¹ College of Physics, Chongqing University, Chongqing 401331, China ² Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China ^{*}Corresponding authors. [†] These authors contributed equally to this work. vectors as an example. Dispersion of TE-like band with k_y =0 and k_y =0.2 are shown in Figs. S1(a) and S1(b), respectively. In Figs. S1(c) and S1(d), we plot $-\omega''$ and the total decay rate γ_{tot} of the resonance modes, which is coincides with each other. ## (II) Pt-BICs and lasing threshold modes at small PT-symmetric perturbation **Fig. S2.** Decay rates calculated from COMSOL Multiphysics. The imaginary part, absorption and radiation rate of resonance modes for γ =0 (a-b) and γ =0.05 (c-e). The intersections of curve $\gamma_{\rm rad}$ and $-\gamma_{\rm abs}$ with $\gamma_{\rm rad} = \gamma_{\rm abs} = 0$ correspond to pt-BICs (black symbols). The other three with finite $\gamma_{\rm rad}$ correspond to the lasing threshold modes (red symbols). Three zoom-in boxes in (e) correspond to the open rectangular regions shown in (d). When a small PT-symmetric perturbation is introduced into the system, the splitting of an ordinary BIC into a pair of pt-BIC and a lasing threshold mode also exists. For a system without gain and loss, there exists three pt-BICs with $\omega''=0$ as shown in Fig. S2(a). The radiation rate γ_{rad} is semi-positive definite and the absorption rate γ_{abs} along the k_x axis is always zero, therefore, $\gamma_{rad}=0$ correspond to BICs. When the system is perturbed by PT symmetry, γ_{abs} fluctuates around zero along the k_x axis. γ_{abs} can intersect with the curves of γ_{rad} at other three points as shown in Fig. S2(c-e), which is close to three BICs. The three intersections with $\gamma_{rad}=-\gamma_{abs}\neq0$ correspond to the lasing threshold modes (red symbols in Fig. S2(e)), at which the radiation loss is exactly balanced by the net gain. ## (III) Behaviors of Q factor near other pt-BICs **Fig. S3.** (a-b) Lasing threshold modes (red lines) and pt-BICs (black dots) on the TE-like band as shown in the k_x - k_y plane. The Q factors near pt-BICs point at (k_{x0}, k_{y0}) =(-0.188, 0) and (-0.035, 0.112) are shown in (c) and (d), respectively. (c) For θ = π /2, the Q factor diverges at the rate of δk_y^{-2} , while at the rate of δk_x^{-1} for θ =0. (d) When the pt-BIC appear at off-high symmetry lines, the Q factor diverges at the rate of $[\delta k_x \cos \theta_0 + \delta k_y \sin \theta_0]^{-2}$ along the tangential direction of the corresponding ring at the point of pt-BIC. The divergence rate of Q factor becomes $[-\delta k_x \sin \theta_0 + \delta k_y \cos \theta_0]^{-1}$ along the normal direction (θ =0). Here, we also show the divergence behaviors of Q factor near the other pt-BICs. In Fig. S3(a), we take the pt-BIC point at (k_{x0}, k_{y0}) =(-0.188, 0) as the origin of coordinates and θ is the included angle between negative x direction and dashed line. For any arbitrary direction, we define $\delta k_x = k_x - k_{x0} = |\delta k| \cos \theta$ and $\delta k_y = k_y - k_{y0} = |\delta k| \sin \theta$. The Q factors along the dashed line with different included angle θ close to pt-BIC are shown in Fig. S3(c). For θ =0, ω'' crosses zero linearly near a pt-BIC and $\partial \omega''/\partial k_x$ is not zero. Therefore, $\omega'' \propto \delta k_x$ and the Q factor is proportional to δk_x^{-1} . However, for θ = π /2, the linear term vanishes and $\omega'' \propto \delta k_y^2$, hence the Q factor carries a completely different Q-factor divergence rate, i.e., $Q \propto \delta k_y^{-2}$. The divergence rate of Q factor has the form of $[c\delta k_x + \delta k_y^2]^{-1}$, where c is a constant to be determined. By fitting the simulated Q factor of resonance modes with this formula, we can extract the coefficient c=0.35. The pt-BIC at off-high symmetry lines also holds similar anisotropic behavior. For convenience, we take the pt-BIC point at (k_{x0}, k_{y0}) =(-0.035, 0.112) as origin of coordinates as shown in Figs. S3(b). The tangential and normal directions of a ring of lasing threshold modes are defined as the coordinate axes of a local coordinate system. The local coordinate and the k_x - k_y coordinate system can be linked by rotation operation and we obtain θ_0 = 0.472π . The Q factors along the dashed line with different θ close to the pt-BICs are shown in Fig. S3(d). For θ = π /2, the Q factor is proportional to $[\delta k_x \cos \theta_0 + \delta k_y \sin \theta_0]^{-2}$. For the other direction, the divergence rate of Q factor becomes $[-\delta k_x \sin \theta_0 + \delta k_y \cos \theta_0]^{-1}$. Thus, the divergence rate of Q factor has the generic form of $[c(-\delta k_x \sin \theta_0 + \delta k_y \cos \theta_0) + (\delta k_x \cos \theta_0 + \delta k_y \sin \theta_0)^2]^{-1}$, where c is a constant to be determined. By fitting the simulated Q factor of resonance modes with this formula, we can extract the coefficient c=1.95.