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(I) The equality between tot and   

 

Fig. S1. Examples of simulated dispersion, imaginary part   and total decay 

rate tot=rad+abs. The wave vectors are chosen ky=0 and ky=0.2 in the left and right 

panels, respectively. The total decay rate tot radabs coincides with  . 

 

In Fig. 1(e) of the main text, we only show the imaginary part of the eigenfrequency 

  and claim that total decay rate tot=rad+abs and   of the resonance modes are 

coincident. Here, a numerical verification of tot always coincide with   is shown 

in Fig. S1. We take the resonance modes on the TE-like band but with different wave 
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vectors as an example. Dispersion of TE-like band with ky=0 and ky=0.2 are shown in 

Figs. S1(a) and S1(b), respectively. In Figs. S1(c) and S1(d), we plot   and the 

total decay rate tot of the resonance modes, which is coincides with each other. 

 

 

 

(II) Pt-BICs and lasing threshold modes at small PT-symmetric perturbation 

 
 

Fig. S2. Decay rates calculated from COMSOL Multiphysics. The imaginary 

part, absorption and radiation rate of resonance modes for =(a-b) and =(c-e). 

The intersections of curve rad and abs
 
with rad=abs=0 correspond to pt-BICs 

(black symbols). The other three with finite rad correspond to the lasing threshold 

modes (red symbols). Three zoom-in boxes in (e) correspond to the open rectangular 

regions shown in (d).  

 

When a small PT-symmetric perturbation is introduced into the system, the 

splitting of an ordinary BIC into a pair of pt-BIC and a lasing threshold mode also 

exists. For a system without gain and loss, there exists three pt-BICs with =0  as 

shown in Fig. S2(a). The radiation rate rad is semi-positive definite and the absorption 

rate abs along the kx axis is always zero, therefore, rad=0 correspond to BICs. When 

the system is perturbed by PT symmetry, abs fluctuates around zero along the kx axis. 

abs can intersect with the curves of rad at other three points as shown in Fig. S2(c-e), 

which is close to three BICs. The three intersections with rad=abs≠0 correspond to 

the lasing threshold modes (red symbols in Fig. S2(e)), at which the radiation loss is 

exactly balanced by the net gain. 
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(III) Behaviors of Q factor near other pt-BICs  

 
Fig. S3. (a-b) Lasing threshold modes (red lines) and pt-BICs (black dots) on the 

TE-like band as shown in the kx-ky plane. The Q factors near pt-BICs point at (kx0, 

ky0)=(0.188, 0) and (0.035, 0.112) are shown in (c) and (d), respectively. (c) For 

=/2, the Q factor diverges at the rate of 
2

yk 
, while at the rate of 1

xk   for =0. (d) 

When the pt-BIC appear at off-high symmetry lines, the Q factor diverges at the rate 

of 
2

0 0[ cos + sin ]x yk k    
 along the tangential direction of the corresponding ring 

at the point of pt-BIC. The divergence rate of Q factor becomes 
1

0 0[ sin + cos ]x yk k      along the normal direction (=0). 

 

Here, we also show the divergence behaviors of Q factor near the other pt-BICs. 

In Fig. S3(a), we take the pt-BIC point at (kx0, ky0)=(0.188, 0) as the origin of 

coordinates and  is the included angle between negative x direction and dashed line. 

For any arbitrary direction, we define kx=kxkx0=|k|cos and ky= kyky0=k|sin. 

The Q factors along the dashed line with different included angle  close to pt-BIC 

are shown in Fig. S3(c). For =,   crosses zero linearly near a pt-BIC and 

xk   is not zero. Therefore, 
xk    and the Q factor is proportional to 1

xk  . 

However, for =/2, the linear term vanishes and 
2

yk   , hence the Q factor carries 

a completely different Q-factor divergence rate, i.e., 
2Q yk  . The divergence rate 

of Q factor has the form of 
2 1[ + ]x yc k k  

, where c is a constant to be determined. 
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By fitting the simulated Q factor of resonance modes with this formula, we can 

extract the coefficient c=0.35. 

The pt-BIC at off-high symmetry lines also holds similar anisotropic behavior. 

For convenience, we take the pt-BIC point at (kx0, ky0)=(0.035, 0.112) as origin of 

coordinates as shown in Figs. S3(b). The tangential and normal directions of a ring of 

lasing threshold modes are defined as the coordinate axes of a local coordinate system. 

The local coordinate and the kx-ky coordinate system can be linked by rotation 

operation and we obtain 0=0.472. The Q factors along the dashed line with 

different  close to the pt-BICs are shown in Fig. S3(d). For =/2, the Q factor is 

proportional to 
2

0 0[ cos + sin ]x yk k    
. For the other direction, the divergence rate 

of Q factor becomes 
1

0 0[ sin + cos ]x yk k     . Thus, the divergence rate of Q factor 

has the generic form of 
2 1

0 0 0 0[ ( sin + cos )+( cos + sin ) ]x y x yc k k k k         , 

where c is a constant to be determined. By fitting the simulated Q factor of resonance 

modes with this formula, we can extract the coefficient c=1.95. 

 

 

 


