Supplemental Material for＂PT Symmetry Induced Rings of Lasing Threshold Modes Embedded with Discrete Bound States in the Continuum＂

Qianju Song（宋前举）$)^{1, \uparrow}$ ，Shiwei Dai（戴士为）${ }^{1, \uparrow}$ ，Dezhuan Han（韩德专）$)^{1, *}$ ， Z．Q．Zhang（张昭庆）${ }^{2}$ ，C．T．Chan（陈子亭）${ }^{2, *}$ ，and Jian Zi（资剑）$)^{3, *}$
${ }^{1}$ College of Physics，Chongqing University，Chongqing 401331，China
${ }^{2}$ Department of Physics，Hong Kong University of Science and Technology，Clear Water Bay，Hong Kong，China
${ }^{3}$ Department of Physics，Key Laboratory of Micro－and Nano－Photonic Structures （MOE），and State Key Laboratory of Surface Physics，Fudan University，Shanghai 200433，China
＊Corresponding authors．
E－mail addresses：dzhan＠cqu．edu．cn（D．Z．Han），phchan＠ust．hk（C．T．Chan）， and jzi＠fudan．edu．cn（J．Zi）
${ }^{\dagger}$ These authors contributed equally to this work．
（I）The equality between $\gamma_{t 0 t}$ and $-\omega^{\prime \prime}$

Fig．S1．Examples of simulated dispersion，imaginary part $\omega^{\prime \prime}$ and total decay rate $\gamma_{\text {tot }}=\gamma_{\text {rad }}+\gamma_{\text {abs．}}$ ．The wave vectors are chosen $k_{y}=0$ and $k_{y}=0.2$ in the left and right panels，respectively．The total decay rate $\gamma_{\text {tot }}=\gamma_{\text {rad }}+\gamma_{\text {abs }}$ coincides with $-\omega^{\prime \prime}$ ．

In Fig．1（e）of the main text，we only show the imaginary part of the eigenfrequency $\omega^{\prime \prime}$ and claim that total decay rate $\gamma_{\text {tot }}=\gamma_{\text {rad }}+\gamma_{\text {abs }}$ and $-\omega^{\prime \prime \prime}$ of the resonance modes are coincident．Here，a numerical verification of $\gamma_{\text {tot }}$ always coincide with $-\omega^{\prime \prime}$ is shown in Fig．S1．We take the resonance modes on the TE－like band but with different wave
vectors as an example. Dispersion of TE-like band with $k_{y}=0$ and $k_{y}=0.2$ are shown in Figs. S1(a) and S1(b), respectively. In Figs. S1(c) and S1(d), we plot $-\omega^{\prime \prime}$ and the total decay rate $\gamma_{\text {tot }}$ of the resonance modes, which is coincides with each other.

(II) Pt-BICs and lasing threshold modes at small PT-symmetric perturbation

Fig. S2. Decay rates calculated from COMSOL Multiphysics. The imaginary part, absorption and radiation rate of resonance modes for $\gamma=0$ (a-b) and $\gamma=0.05$ (c-e). The intersections of curve γ_{rad} and $-\gamma_{\mathrm{abs}}$ with $\gamma_{\mathrm{rad}}=\gamma_{\mathrm{abs}}=0$ correspond to $p t$-BICs (black symbols). The other three with finite γ_{rad} correspond to the lasing threshold modes (red symbols). Three zoom-in boxes in (e) correspond to the open rectangular regions shown in (d).

When a small PT-symmetric perturbation is introduced into the system, the splitting of an ordinary BIC into a pair of pt-BIC and a lasing threshold mode also exists. For a system without gain and loss, there exists three pt-BICs with $\omega^{\prime \prime}=0$ as shown in Fig. S2(a). The radiation rate $\gamma_{\text {rad }}$ is semi-positive definite and the absorption rate $\gamma_{\text {abs }}$ along the k_{x} axis is always zero, therefore, $\gamma_{\mathrm{rad}}=0$ correspond to BICs. When the system is perturbed by PT symmetry, γ_{abs} fluctuates around zero along the k_{x} axis. $\gamma_{\text {abs }}$ can intersect with the curves of $\gamma_{\text {rad }}$ at other three points as shown in Fig. S2(c-e), which is close to three BICs. The three intersections with $\gamma_{\text {rad }}=-\gamma_{\mathrm{abs}} \neq 0$ correspond to the lasing threshold modes (red symbols in Fig. S2(e)), at which the radiation loss is exactly balanced by the net gain.

(III) Behaviors of \mathbf{Q} factor near other $\boldsymbol{p t}$-BICs

Fig. S3. (a-b) Lasing threshold modes (red lines) and pt-BICs (black dots) on the TE-like band as shown in the $k_{x}-k_{y}$ plane. The Q factors near $p t$-BICs point at (k_{x}, $\left.k_{y 0}\right)=(-0.188,0)$ and $(-0.035,0.112)$ are shown in (c) and (d), respectively. (c) For $\theta=\pi / 2$, the Q factor diverges at the rate of δk_{y}^{-2}, while at the rate of δk_{x}^{-1} for $\theta=0$. (d) When the pt-BIC appear at off-high symmetry lines, the Q factor diverges at the rate of $\left[\delta k_{x} \cos \theta_{0}+\delta k_{y} \sin \theta_{0}\right]^{-2}$ along the tangential direction of the corresponding ring at the point of $p t$-BIC. The divergence rate of Q factor becomes $\left[-\delta k_{x} \sin \theta_{0}+\delta k_{y} \cos \theta_{0}\right]^{-1}$ along the normal direction ($\theta=0$).

Here, we also show the divergence behaviors of Q factor near the other $p t$-BICs. In Fig. S3(a), we take the pt-BIC point at $\left(k_{x 0}, k_{y 0}\right)=(-0.188,0)$ as the origin of coordinates and θ is the included angle between negative x direction and dashed line. For any arbitrary direction, we define $\delta k_{x}=k_{x}-k_{x 0}=|\delta k| \cos \theta$ and $\delta k_{y}=k_{y}-k_{y 0}=|\delta k| \sin \theta$. The Q factors along the dashed line with different included angle θ close to $p t$-BIC are shown in Fig. S3(c). For $\theta=0, \omega^{\prime \prime}$ crosses zero linearly near a $p t$-BIC and $\partial \omega^{\prime \prime} / \partial k_{x}$ is not zero. Therefore, $\omega^{\prime \prime} \propto \delta k_{x}$ and the Q factor is proportional to δk_{x}^{-1}. However, for $\theta=\pi / 2$, the linear term vanishes and $\omega^{\prime \prime} \propto \delta k_{y}^{2}$, hence the Q factor carries a completely different Q -factor divergence rate, i.e., $\mathrm{Q} \propto \delta k_{y}^{-2}$. The divergence rate of Q factor has the form of $\left[c \delta k_{x}+\delta k_{y}^{2}\right]^{-1}$, where c is a constant to be determined.

By fitting the simulated Q factor of resonance modes with this formula, we can extract the coefficient $c=0.35$.

The pt-BIC at off-high symmetry lines also holds similar anisotropic behavior. For convenience, we take the $p t$-BIC point at $\left(k_{x 0}, k_{y 0}\right)=(-0.035,0.112)$ as origin of coordinates as shown in Figs. S3(b). The tangential and normal directions of a ring of lasing threshold modes are defined as the coordinate axes of a local coordinate system. The local coordinate and the $k_{x}-k_{y}$ coordinate system can be linked by rotation operation and we obtain $\theta_{0}=0.472 \pi$. The Q factors along the dashed line with different θ close to the $p t$-BICs are shown in Fig. S3(d). For $\theta=\pi / 2$, the Q factor is proportional to $\left[\delta k_{x} \cos \theta_{0}+\delta k_{y} \sin \theta_{0}\right]^{-2}$. For the other direction, the divergence rate of Q factor becomes $\left[-\delta k_{x} \sin \theta_{0}+\delta k_{y} \cos \theta_{0}\right]^{-1}$. Thus, the divergence rate of Q factor has the generic form of $\left[c\left(-\delta k_{x} \sin \theta_{0}+\delta k_{y} \cos \theta_{0}\right)+\left(\delta k_{x} \cos \theta_{0}+\delta k_{y} \sin \theta_{0}\right)^{2}\right]^{-1}$, where c is a constant to be determined. By fitting the simulated Q factor of resonance modes with this formula, we can extract the coefficient $c=1.95$.

