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In this supplement, we provide: details on the derivation of Eqs. (10) from Eqs. (7); illustrative
information about the solutions of Eqs. (16), which complete the definition of the Bethe-Salpeter
kernel; numerical demonstrations which confirm that our kernel construction preserves both the
Gell-Mann–Oakes–Renner relation for meson masses [1, 2] and the quark-level Goldberger-Treiman
relation [2, 3], both of which are salient corollaries of DCSB; and describe the BSE solution method
that we have employed.

Path from Eqs. (7) to (10). — Using Eqs. (8), Eqs. (7) can
be expanded as follows:

[ΣA(k+)− ΣA(k−)] + [ΣB(k+)− ΣB(k−)]

=
∑
n

∫
dq

K
(n)
L [S(q−)− S(q+)]K

(n)
R , (S.1a)

− γ5[ΣA(k+)− ΣA(k−)] + γ5[ΣB(k+) + ΣB(k−)]

=
∑
n

∫
dq

K
(n)
L [S(q+)γ5 + γ5S(q−)]K

(n)
R . (S.1b)

Multiply Eq. (S.1b) from the left with γ5 and expand
the right-hand-sides of both entries in Eqs. (S.1) to ob-
tain:

[ΣA(k+)− ΣA(k−)] + [ΣB(k+)− ΣB(k−)]

=
∑
n

∫
dq

K
(n)
L [∆±σA

+ σB(q−)− σB(q+)]K
(n)
R , (S.2a)

− [ΣA(k+)− ΣA(k−)] + [ΣB(k+) + ΣB(k−)]

=
∑
n

∫
dq

γ5K
(n)
L γ5[∆±σA

+ σB(q−) + σB(q+)]K
(n)
R .

(S.2b)

Inserting the decomposition in Eq. (9) into both entries
in Eq. (S.2) yields:

[ΣA(k+)− ΣA(k−)] + [ΣB(k+)− ΣB(k−)]

=

∫
dq

{
K

(+)
L0 [∆±σA

+ σB(q−)− σB(q+)]K
(−)
R0

+K
(−)
L0 [∆±σA

+ σB(q−)− σB(q+)]K
(+)
R0

+K
(−)
L1 [σB(q−)− σB(q+)]K

(−)
R1

+K
(+)
L1 [σB(q−)− σB(q+)]K

(+)
R1

+ K
(−)
L2 [∆±σA

]K
(−)
R2 +K

(+)
L2 [∆±σA

]K
(+)
R2

}
,

(S.3a)

−[ΣA(k+)− ΣA(k−)] + [ΣB(k+) + ΣB(k−)]

=

∫
dq

{
K

(+)
L0 [∆±σA

+ σB(q−) + σB(q+)]K
(−)
R0

−K(−)
L0 [∆±σA

+ σB(q−) + σB(q+)]K
(+)
R0

−K(−)
L1 [σB(q−) + σB(q+)]K

(−)
R1

+K
(+)
L1 [σB(q−) + σB(q+)]K

(+)
R1

− K
(−)
L2 [∆±σA

]K
(−)
R2 +K

(+)
L2 [∆±σA

]K
(+)
R2

}
,

(S.3b)

where we have exploited the notation and characteristics
described after Eq. (9) to arrive at these expressions, viz.
⊗± := 1

2 (⊗± γ5 ⊗ γ5) and γ5K
(±)γ5 = ±K(±).

One can now derive the following relations from ap-
propriate manipulations of Eqs. (S.3):

ΣB(k+) =

∫
dq

{
K

(+)
L0 [∆±σA

+ σB(q−)]K
(−)
R0

+K
(−)
L0 [−σB(q+)]K

(+)
R0 +K

(−)
L1 [−σB(q+)]K

(−)
R1

+K
(+)
L1 [σB(q−)]K

(+)
R1 +K

(+)
L2 [∆±σA

]K
(+)
R2

}
, (S.4a)

[ΣA(k+)− ΣA(k−)]− ΣB(k−)

=

∫
dq

{
K

(+)
L0 [−σB(q+)]K

(−)
R0

+K
(−)
L0 [∆±σA

+ σB(q−)]K
(+)
R0 +K

(−)
L1 [σB(q−)]K

(−)
R1

+K
(+)
L1 [−σB(q+)]K

(+)
R1 +K

(−)
L2 [∆±σA

]K
(−)
R2

}
.

(S.4b)

At this point, simple combinations of the form

term± γ5 term γ5 , (S.5)

where “term” is the left- and right-hand-side of a chosen
relation in Eq. (S.4), lead to the following identities:

ΣB(k+) =

∫
dq

{
K

(+)
L0 [∆±σA

]K
(−)
R0 −K

(−)
L1 [σB(q+)]K

(−)
R1

+ K
(+)
L1 [σB(q−)]K

(+)
R1

}
, (S.6a)

0 =

∫
dq

{
K

(+)
L0 [σB(q−)]K

(−)
R0 −K

(−)
L0 [σB(q+)]K

(+)
R0

+ K
(+)
L2 [∆±σA

]K
(+)
R2

}
, (S.6b)

[ΣA(k+)− ΣA(k−)] =

∫
dq

{
K

(+)
L0 [−σB(q+)]K

(−)
R0
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FIG. 1. Scalar functions obtained as solutions of Eqs. (16),

which complete the definition of Kad in Eq. (15); hence, K(2).
Each curve depicts a dimensionless function. Illustration pre-
pared using D = (0.72 GeV)2, η = 1.6, m = 3 MeV, P 2 =
−1 GeV2. Rescaling factor W 2 = ω4/[8π2D] = (0.1 GeV)2.

W 2f
(+)
p0 is overwhelmingly dominant on a material neighbour-

hood of l2 = 0, so we divided this function by five in order to
present a clear picture.

+K
(−)
L0 [σB(q−)]K

(+)
R0 +K

(−)
L2 [∆±σA

]K
(−)
R2

}
,

(S.6c)

−ΣB(k−) =

∫
dq

{
K

(−)
L0 [∆±σA

]K
(+)
R0 +K

(−)
L1 [σB(q−)]K

(−)
R1

+K
(+)
L1 [−σB(q+)]K

(+)
R1

}
, (S.6d)

which are readily recognised as the entries in Eqs. (10).
Here, the expression for ΣB(k+) is related to that for
ΣB(k−) by charge conjugation; hence it contains no ad-
ditional information and is omitted from the manuscript.

Solving Eqs. (16) and Illustrating their Solutions. —
Equations (16) are a pair of complex-valued integral
equations, which yield four real-valued linear integral
equations whose solutions are the scalar functions that
complete Kad and hence K(2). The simplicity of the
equations means they may readily be solved by intro-
ducing appropriate quadrature rules to replace the in-
tegrations and then working with the matrix equations
that result.

For illustration and future comparisons, it may be use-
ful to draw examples of the solutions obtained. Using
D = (0.72 GeV)2, η = 1.6, m = 3 MeV, which pro-
duce the most favourable results displayed in Fig. 1, and
setting P 2 = −1 GeV2, a value roughly midway be-
tween that associated with the ρ and a1 mesons, one
obtains the results drawn in Fig. 1. In preparing this
image, we referred to Eqs. (11), (15) and constructed
comparisons of rescaled dimensionless functions: since
1/W 2 = 8π2D/ω4 is the l2 = 0 value of Gµν(l), it is

natural, e.g. to compare W 2f
(+)
p0 with f

(−)
p1 .

The fp functions are associated with that part of the
WGT identities which relate to the Dirac scalar piece of
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FIG. 2. Upper panel – A. Pion mass-squared as a func-
tion of current-quark mass, m2

π(m): red circles – numerical
solution; solid blue curve – quadratic fit to numerical re-
sult, Eq. (S.7a); and dot-dashed green curve – linear fit to
result, Eq. (S.7b). Lower panel – B. Comparison between
the two sides of Eq. (S.9), viz. validation of the quark-level
Goldberger-Treiman relation. Results in both panels obtained
with D = (0.92 GeV)2, η = 2/5.

the quark propagators, whereas the fn terms are linked
with the vector part. Since DCSB is expressed most
strongly in the Dirac scalar part of the propagators, it is
therefore unsurprising that the fp functions are largest.

GMOR and GT Relations. — Using D = (0.92 GeV)2,
η = 2/5, we depict m2

π(m) in Fig. 2A. The red circles are
the results produced by our Bethe-Salpeter kernel. They
are compared with two fits:

quadratic : m2
π = m× 5.40(1− 0.077m/mm) , (S.7a)

linear : m2
π = m× 5.07 , (S.7b)

where mm = 0.1 GeV. There is little to choose between
the fits. Thus, the kernel we have constructed preserves
the Gell-Mann-Oakes-Renner relation [1, 2].

Furthermore, with a computed value of f0π =
0.093 GeV, Eqs. (S.7) yield the following results for the
m = 0 chiral condensate [4]:

quadratic : − 〈q̄q〉 = (0.286 GeV)3, (S.8a)

linear : − 〈q̄q〉 = (0.280 GeV)3. (S.8b)
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They are mutually consistent and compare favourably
with typical large renormalisation scale values, e.g.
Refs. [5–7] find −〈q̄q〉 ≈ (0.276 GeV)3.

A stringent pointwise test of kernel consistency is pro-
vided by the chiral-limit Goldberger-Treiman relation
[2, 3]:

f0πE
0
π(k2;P 2 = 0) = B0(k2) , (S.9)

where the index “0” indicates that the quantity is cal-
culated in the chiral limit and E0

π is the dominant
(pseudoscalar) term in the pion’s canonically normalised
Bethe-Salpeter amplitude:

Γπ(k;P ) = γ5 [iEπ(k;P ) + γ · PFπ(k;P )

+γ · kGπ(k;P ) + σkPHπ(k;P )] . (S.10)

Figure 2B verifies that our kernel delivers solutions that
satisfy this identity.

Solving the BSE. — Here we recapitulate a common
method for solving the BSE. Namely, the BSE can be
written as an eigenvalue problem: Γn = λn(P 2)KΓn.
Here, λn(P 2) is the eigenvalue; the Bethe-Salpeter am-
plitude, Γn, is the associated eigenvector; and λn(P 2) >
λn+1(P 2) in the absence of level degeneracies. We use a
Euclidean metric, so the on-shell mass for a meson lies
at P 2 < 0.

The physical solution for the ground-state, n = 1, in
a given channel is obtained when one finds that time-
like value of P 2, closest to P 2 = 0, for which λ0(P 2 =
−m2

n=1) = 1; the first radial excitation is found by locat-
ing the value of P 2 for which λ2(P 2) = 1; etc. [8, 9].

Since P 2 < 0 for all physical systems, the variables
q±, k± in Eq. (3) are complex valued. The dressed-quark
propagator in the kernel is thus sampled on some do-
main in the complex plane; and we obtain the solution
using now well-known algorithms [5, 10]. Those solutions
possess complex conjugate poles [5, 11]. With the ker-
nels employed herein, the poles lie outside the sampled
domain for meson masses . 1.3 GeV. In such cases, the
mass and Bethe-Salpeter amplitude are readily obtained.

Today, there are sophisticated methods [12] based on
perturbation theory integral representations [13] for han-
dling states with mass & 1.3 GeV. They provide access to
the meson mass and Bethe-Salpeter amplitude. However,
they are cumbersome to implement. Herein, since we are
only interested in masses, we employ the eigenvalue ex-
trapolation procedure introduced in Ref. [14]; to wit, for
the heavier systems, we compute λn(P 2) on a P 2-domain
that is unaffected by the propagator poles and then ex-
trapolate in P 2 to locate the zero of [1 − λn(P 2)]. This
yields an estimate of the meson’s mass along with an un-
certainty. It does not provide straightforward access to
the associated Bethe-Salpeter amplitude.

In preparing Fig. 1A, eigenvalue extrapolations were
used for the b′1, a′1, f ′0. In the first two cases, the un-
certainty is smaller than the size of the associated plot
marker. In the last case, it is a little larger; so we display
a band that expresses the extrapolation uncertainty.
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