New members of high-energy-density compounds: YN_5 and YN_8

Jun-Yi Miao(苗俊一)^{1,2}, Zhan-Sheng Lu(路战胜)¹, Feng Peng(彭枫)^{2,1,*} and Cheng Lu(卢

成)^{3,*}

¹School of Physics, Henan Normal University, Xinxiang, 453007, China ²College of Physics and Electronic Information, Luoyang Normal University, Luoyang 471022, China ³School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074,

China

^{a)}Electronic mail: <u>fpeng@calypso.cn</u>

^{b)}Electronic mail: <u>lucheng@calypso.cn</u>

FIG. 1. Phonon dispersion curve of Y₅N₂ in theP4/nmm phase at 25 GPa

FIG. 2. Phonon dispersion curve of Y_3N_2 in the C2/m phase at 100 GPa.

FIG. 3. Phonon dispersion curve of YN in the *Fm-3m* phase at 50 GPa.

FIG. 4. Phonon dispersion curve of YN_2 in the $P2_1/c$ phase at 100 GPa.

FIG. 5. Phonon dispersion curve of YN_3 in the *P*-1 phase at 50 GPa.

FIG. 6. Phonon dispersion curves of P-1 phase YN₄ at 50 GPa (upper panel) and 0 GPa (lower panel).

FIG. 7. Phonon dispersion curve of YN_5 in the C2/m phase at 100 GPa.

FIG. 8. Phonon dispersion curve of YN_8 in the *P*-1 phase at 75 GPa.

FIG. 9. Phonon dispersion curve of YN_{10} in the *Ibam* phase at 75 GPa.

FIG. 10. Crystal structures of polynitrogens for Y-N compounds. (a) P4/nmm phase for Y₅N₂ at 25 GPa. (b) C/2m structure for Y₃N₂ at 100 GPa. (c) Fm-3m structure for YN at 50 GPa. (d) P21/c phase of YN₂ at 100 GPa. (e) P-1 phase of YN₃ at 50 GPa.

FIG. 11. The calculated cationic and anionic charges of N (A) and Y (B) ions in different YNx systems.Bader charge analysis reveals only part of the charges (1.47*e*) of atom transfer to N atom in YN layers and the charges transfer of $Y \rightarrow N$ are 0.12*e* and 0.31*e* in the double Y layers and quadruple Y layers for Y₅N₂, respectively. Here, we only give the average per atom transfer charges for Y₅N₂.

FIG. 12. ELFs for Y-N compounds. (a) *P4/nmm* phase for Y_5N_2 at 25 GPa. (b) *C/2m* phase for Y_3N_2 at 100 GPa. (c) *Fm-3m* phase for YN at 50 GPa.

FIG. 13. Electronic band structure and projected DOS per atom of Y1-*s*, Y1-*p*, Y1-*d*, Y2-*s*, Y2-*p*, Y2-*d*, N-*s*, and N-*p* states of P4/*nmm* phase Y₅N₂ at 25 GPa. Y1 is the Y atom in YN layer, and Y2 is the Y atom in Y layer.

FIG. 14. Electronic band structure and projected DOS per atom of Y-s, Y-p, Y-d, N-s, and N-p states of *Fm*-3m phase YN at 50 GPa. The Y-d states at Gamma decompose into e_g and t_{2g} symmetry. The partial DOS also indicates the covalent character due to the fact that Y-d and N-p PDOS in the occupied parts follow closely with similar weight.

FIG. 15. Electronic band structure and projected DOS per atom of Y-s, Y-p, Y-d, N-s, and N-p states *P*2₁/*c* phase YN₂ at 100 GPa.

FIG. 16. ELFs and charge densiity of Y-N compounds. (a) P21/c phase of YN₂ at 100 GPa. The ELF is plotted in (-0.81 -1 0.36) sections for N₄ unit. (b) *P*-1 structure for YN₃ at 50 GPa. The ELF is plotted in (-1 0 -0.68) sections for N₆ unit. (c) The charge densiity of N₆ ring in C/2m phase of YN₅ at 100 GPa.

FIG. 17. Electronic band structure and projected DOS per atom of Y-s, Y-p, Y-d, N-s, and N-p states of P-1 phase of YN₄ at 50GPa.

FIG. 18. Electronic band structure and projected DOS per atom of Y-*s*, Y-*p*, Y-*d*, N-*s*, and N-*p* states of the *Ibam* phasee of YN₁₀ at 75GPa.

FIG. 19. Phonon dispersion curve of *Ibam* phase YN_{10} at 0 GPa.

FIG. 20. Electronic band structure and projected DOS per atom of Y-s, Y-p, Y-d, N-s, and N-p states of *C*/2*m* phase Y₃N₂ at 100GPa.

FIG. 21. Electronic band structure and projected DOS per atom of Y-*s*, Y-*p*, Y-*d*, N-*s*, and N-*p* states of *P*-1 phase of YN₃ at 50 GPa.

TABLE I. Calculated structural parameters of various Y-N compounds.

	Space group	lattice parameters	Atoms	Atomic coordinates (fractional)			
		a, b, c (Å) α, β, γ (deg)		X	Y	Z	
Y_5N_2	P4/nmm	<i>a</i> = <i>b</i> =3.3154	Y1(2c)	0.50000	0.00000	0.85811	
(25GPa)		<i>c</i> =22.1450	Y2(2c)	0.00000	0.50000	0.34819	
		$\alpha = \beta = \gamma = 90.0000$	Y3(2c)	0.00000	0.50000	0.54817	
			Y4(2c)	0.00000	0.50000	0.95342	
			Y5(2c)	0.50000	0.00000	0.24605	
			N1(2c)	0.50000	0.00000	0.34982	
			N2(2c)	0.50000	0.00000	0.75609	
Y_3N_2	C2/m	<i>a</i> =5.20067	Y1(4i)	0.71138	0.50000	0.13332	
(100GPa)		<i>b</i> =3.01959	Y2(2c)	0.00000	0.00000	0.50000	
		<i>c</i> =7.20971	N1(4i)	0.60355	0.00000	0.31040	
		<i>α=β</i> =90.0000					
		<i>γ</i> =103.6652					
YN	Fm-3m	<i>a</i> = <i>b</i> = <i>c</i> =4.58	Y1(4a)	0.00000	0.00000	0.00000	
(50GPa)		<i>α=β=γ=</i> 90.0000	N1(4b)	0.00000	0.50000	0.00000	

YN ₂	$P2_{1}/c$	a=5.91050	Y1(4e)	-0.76967	0.47722	-0.11707
(100GPa)		<i>b</i> = 4.42080	N1(4e)	-0.17391	0.02773	0.14925
		<i>c</i> =4.39840	N5(4e)	-0.43333	0.08439	-0.06693
		<i>α=γ=</i> 90.0000				
		<i>β</i> =118.4491				
YN ₃	<i>P</i> -1	<i>a</i> = 3.11250	Y1(2i)	0.58177	0.69281	0.30482
(50GPa)		<i>b</i> = 4.45580	N1(2i)	0.73189	0.19888	0.36202
		<i>c</i> =4.87550	N2(2i)	0.11071	0.68105	0.83070
		<i>α</i> =99.4988	N3(2i)	0.99749	0.13661	0.96963
		<i>γ</i> =106.3797				
		β = 101.0410				
YN ₄	<i>P</i> -1	<i>a</i> = 3.53080	Y1(2i)	0.93742	0.26205	0.72095
(50GPa)		<i>b</i> = 3.60790	N1(2i)	0.36742	0.05172	0.04786
		<i>c</i> =7.10240	N2(2i)	0.35627	0.40938	0.04681
		<i>α</i> =104.1765	N3(2i)	0.72693	0.16915	0.38451
		γ=94.6326	N4(2i)	0.49839	0.40868	0.40707
		β = 106.9361				
YN ₅	<i>C</i> 2/ <i>m</i>	<i>a</i> =6.79170	Y1(4h)	0.00000	0.76914	0.50000
(100GPa)		<i>b</i> = 7.04290	N1(8j)	0.88007	0.33681	0.33681
		<i>c</i> = 7.04290	N2(4i)	0.71819	0.00000	0.10381
		<i>α=γ=</i> 90.0000	N3(4i)	0.29503	0.00000	0.24716
		β=123.1281	N4(4i)	0.91632	0.00000	0.82301

TABLE $\Pi.$ Calculated structural parameters of various Y-N compounds.

	Space group	lattice parameters	Atoms	Atomic coordinates (fractional)			
		a, b, c (Å) α, β, γ (deg)		X	Y	Ζ	
YN ₈	<i>P</i> -1	<i>a</i> = 3.51660	Y1(1d)	0.50000	0.50000	0.00000	
(75GPa)		<i>b</i> = 3.71620	N1(2i)	0.19296	0.71884	0.36967	
		<i>c</i> =5.09080	N2(2i)	0.62164	0.41220	0.44212	
		<i>α</i> =104.0308	N3(2i)	0.82854	0.45677	0.89652	
		<i>γ</i> =101.6472	N4(2i)	0.09158	0.11361	0.11361	
		β = 100.6977					
YN ₁₀	Ibam	<i>a</i> = 7.79730	Y1(4a)	0.00000	0.00000	0.25000	
(75GPa)		<i>b</i> = 5.51150	N1(16k)	0.88451	0.34289	0.14622	
		<i>c</i> =7.25370	N2(8j)	0.52563	0.77617	0.00000	
		$\alpha = \beta = \gamma = 90.0000$	N3(16k)	0.74878	0.44784	0.91136	

		C ₁₁	C ₂₂	C ₃₃	C ₄₄	C ₅₅	C ₆₆	C ₁₂	C ₁₃	C ₁₄	C ₁₅	C ₁₆
YN ₄	<i>P</i> -1	171	371	259	72	72	29	73	58	19	10	15
YN ₈	<i>P</i> -1	172	497	239	103	139	148	57	158	22	25	91
		C ₂₃	C ₂₄	C ₂₅	C ₂₆	C ₃₄	C ₃₅	C ₃₆	C ₄₅	C ₄₆	C ₅₆	
YN ₄	<i>P</i> -1	68	71	1	12	10	-1	42	11	4	16	
YN ₈	<i>P</i> -1	82	60	-49	30	-6	25	135	86	14	10	
		В	G	Ε	v							
YN ₄	<i>P</i> -1	113	60	153	0.27							
YN ₈	<i>P</i> -1	126	77	192	0.25							
		C ₁₁	C ₂₂	C ₃₃	C ₄₄	C ₅₅	C ₆₆	C ₁₂	C ₁₃	C ₁₅	C ₂₃	C ₂₅
YN ₅	<i>C</i> 2/ <i>m</i>	353	221	73	52	126	53	36	149	-43	40	15
YN ₁₀	Ibam	122	61	95	-56	-171	25	56	42		18	
		C ₃₅	C ₄₆	В	G	Ε	v					
YN ₅	<i>C</i> 2/ <i>m</i>	-34	11	70	42	105	0.25					
YN ₁₀	Ibam			51	7	20	0.43					

TABLE III. Elastic constants C_{ij} (GPa), bulk modulus B(GPa), shear modulus G(GPa), Young's modulus E(GPa), and Possion's ratio v of P-1-YN₄, C2/m-YN₅, P-1-YN₈, and *Ibam*-YN₁₀ at ambient pressure.

Note:

For a monoclinic phase, the criteria for mechanical stability are given by the following equation:

$$C_{11} > 0, \quad C_{22} > 0, \quad C_{33} > 0, \quad C_{44} > 0, \quad C_{55} > 0,$$

$$C_{66} > 0, \quad [C_{11} + C_{22} + C_{33} + 2(C_{12} + C_{13} + C_{23})] > 0,$$

$$(C_{33}C_{55} - C_{35}^2) > 0, \quad (C_{44}C_{66} - C_{46}^2) > 0,$$

$$(C_{22} + C_{33} - 2C_{23}) > 0,$$

$$[C_{22}(C_{33}C_{55} - C_{35}^2) + 2C_{23}C_{25}C_{35} - C_{23}^2C_{55} - C_{25}^2C_{33}] > 0,$$

$$\begin{aligned} &\{2[C_{15}C_{25}(C_{33}C_{12}-C_{13}C_{23})+C_{15}C_{35}(C_{22}C_{13}-C_{12}C_{23})\\ &+C_{25}C_{35}(C_{11}C_{23}-C_{12}C_{13})]-[C_{15}^2(C_{22}C_{33}-C_{23}^2)\\ &+C_{25}^2(C_{11}C_{33}-C_{13}^2)+C_{25}^2(C_{11}C_{22}-C_{12}^2)]+C_{55}g\}>0. \end{aligned}$$

Here $g = C_{11}C_{22}C_{33} - C_{11}C_{23}^2 - C_{22}C_{13}^2 - C_{33}C_{12}^2 + 2C_{12}C_{13}C_{23}$

For an orthorhombic phase, the criteria for mechanical stability are given by the following equation:

$$\begin{split} C_{11} &> 0, \quad C_{22} > 0, \quad C_{33} > 0, \quad C_{44} > 0, \quad C_{55} > 0, \\ C_{66} &> 0, \quad \left[C_{11} + C_{22} + C_{33} + 2(C_{12} + C_{13} + C_{23})\right] > 0, \\ (C_{11} + C_{22} - 2C_{12}) &> 0, \quad (C_{11} + C_{33} - 2C_{13}) > 0, \\ (C_{22} + C_{33} - 2C_{23}) &> 0. \end{split}$$