Supplemental Material for "Electrochemical Behavior of

Vanadium Carbide in Neutral Aqueous Electrolytes"

Chaofan Chen(陈超凡)¹, Di Pang(庞迪)¹, Xiaotong Wang(王晓彤)¹, Gang Chen(陈 岗)^{1,2}, Fei Du(杜菲)^{1,2*}, Yu Gao(高宇)^{1*}

¹Key Laboratory of Physics and Technology for Advanced Batteries

(Ministry of Education), College of Physics, Jilin University, Changchun 130012, Jilin, P R China

²State Key Laboratory of Superhard Materials, College of Physics,

Jilin University, Changchun 130012, Jilin, P R China

Contact information:

corresponding author: yugao@jlu.edu.cn, 17790011805

dufei@jlu.edu.cn, 13514491857

First author: cfchen98@163.com, 18443154660

Second author: pangdi19@mails.jlu.edu.cn,16688209392

For systems exhibiting capacitive and semi-infinite linear diffusion process, the current (i) for capacitive process of a cyclic voltammetry experiment is proportional to sweep rate(v), while the current of diffusion limited process is proportional to $v^{1/2}$. the current flowing at a specific potential i(V) is defined as:

 $i (V) = k_1 v + k_2 v^{1/2}$(1)

where k_1 and k_2 are fitting parameters. A plot of $i(V)/\upsilon^{1/2}$ versus $\upsilon^{1/2}$ should produce a straight line from which k_1 and k_2 can be determined, and hence the contributions to capacitive and diffusive current can be deduced[1].

Figure.S1 capacitive contribution of $d-V_2C$ in Li_2SO_4 (a), (b) and $MgSO_4$ (c), (d)

Figure.S2 Nyquist plot from EIS.

Figure.S3 XRD patterns of $d-V_2C$ dry and immersed in 0.5 M Li₂SO₄ and 1 M MgSO₄. Electrochemical in situ X-Ray diffraction study of $d-V_2C$ in different electrolytes.

Reference

[1]Augustyn V, Come J, Lowe M A, Kim J W, Taberna P-L, Tolbert S H, Abruña H D, Simon P and Dunn B 2013 *Nature Materials* **12** 518