Supporting Information for "Anisotropic Magnon-Magnon Coupling in Synthetic Antiferromagnets"

Wei He¹*, Z. K. Xie¹, Rui Sun¹, Meng Yang¹, Yang Li¹, Xiao-Tian Zhao²*, Wei Liu², Z. D. Zhang², Jian-Wang Cai¹, Zhao-Hua Cheng¹, and Jie Lu³*

¹State Key Laboratory of Magnetism and Beijing National Laboratory for Condensed

Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190,

China

²Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China

³College of Physics and Hebei Advanced Thin Films Laboratory, Hebei Normal University, Shijiazhuang 050024, China

Corresponding authors:

E-mail: hewei@iphy.ac.cn E-mail: xtzhao@imr.ac.cn E-mail: jlu@hebtu.edu.cn

1. The description of the energy model

For the case when the external magnetic field H is applied in the plane of films, the energy for the system including two identical ferromagnetic layers is[1]

$$E = \sum_{i=1}^{2} d_{i} \left[-M_{i} H \cos(\theta_{i} - \theta_{H}) - K_{u} \cos^{2} \theta_{i} \right] + J_{1} \frac{M_{1} \cdot M_{2}}{M_{1} M_{2}} + J_{2} \left(\frac{M_{1} \cdot M_{2}}{M_{1} M_{2}} \right)^{2}.$$

where $M_1 = M_2 = M_s$ is the magnetization for each CoFeB layer, and d_i (*i*=1,2) is the

thickness for the top and bottom layer, i.e., d_1 is 12 nm and d_2 is 10 nm. K_u is the uniaxial in-plane anisotropy. Its easy axis is defined as the x-axis. θ_i and θ_H are defined as the angle of equilibrium directions for two magnetizations and the external field with respect to the x-axis, respectively. Here, both the so-called bilinear coupling constant J_1 and biquadratic coupling constant J_2 are included. The equilibrium configuration (θ_1 and θ_2) can be obtained through find the minimum of energy. At zero field, if J_1 is positive, the bilinear coupling favors two magnetic layers antiparallel. It is the so-called antiferromagnetic coupling. On other hand, J_2 is positive, the biquadratic coupling favors the two magnetizations 90°-type coupling. More cases have been discussed in ref.[2].

2. The solution of ferromagnetic resonance in SAF

For convenience, we define an effective anisotropy field and effective exchange fields as $H_u=2K_u/M$, $H_{ex1}^{(i)} = \frac{J_{1,i}}{Md_i}$, and $H_{ex2}^{(i)} = J_{2,i}/Md_i$, *i*=1,2 for the top and bottom magnetic layer, respectively. Based on the coupled Landau-Lifshitz equation (LL), the resonance frequency of magnetization precession can be treated as the solution of the linearized LL equation in the case of a small amplitude of magnetization precession. The dispersion is numerical determined as the eigenvalue of the following matrix:[1]

$$\begin{bmatrix} 0 & H_1 & 0 & H_2 \\ -H_3 & 0 & H_4 & 0 \\ 0 & H_6 & 0 & H_5 \\ H_8 & 0 & -H_7 & 0 \end{bmatrix},$$

where

$$\begin{split} H_{1} &= H \cos \overline{\mathbb{H}}_{0} - \theta_{H} + H_{u} \cos \overline{\mathbb{H}}_{2} (\theta_{1} - \theta_{u}) + 4\pi M_{s} + H_{ex1}^{(1)} \cos \overline{\mathbb{H}}_{0} - \theta_{2}) \\ &- 2H_{ex2}^{(1)} \cos \overline{\mathbb{H}}_{2} (\theta_{1} - \theta_{2}) \\ H_{2} &= -H_{ex1}^{(2)} + 2H_{ex2}^{(2)} \cos(\theta_{1} - \theta_{2}) \\ H_{3} &= H \cos(\theta_{1} - \theta_{H}) + H_{u} \cos[2(\theta_{1} - \theta_{u})] + H_{ex1}^{(1)} \cos(\theta_{1} - \theta_{2}) \\ &- 2H_{ex2}^{(1)} \cos[2(\theta_{1} - \theta_{2})] \\ H_{4} &= H_{ex1}^{(2)} \cos(\theta_{1} - \theta_{2}) - 2H_{ex2}^{(2)} \cos[2(\theta_{1} - \theta_{2})] \\ H_{5} &= H \cos(\theta_{2} - \theta_{H}) + H_{u} \cos \overline{\mathbb{H}}_{2} (\theta_{2} - \theta_{u})] + 4\pi M_{s} + H_{ex1}^{(2)} \cos(\theta_{1} - \theta_{2}) \\ &- 2H_{ex2}^{(2)} \cos \overline{\mathbb{H}}_{2} (\theta_{1} - \theta_{2})] \\ H_{6} &= -H_{ex1}^{(1)} + 2H_{ex2}^{(1)} \cos(\theta_{1} - \theta_{2}) \\ H_{7} &= H \cos(\theta_{2} - \theta_{H}) + H_{u} \cos[2(\theta_{2} - \theta_{u})] + H_{ex1}^{(2)} \cos(\theta_{1} - \theta_{2}) \\ &- 2H_{ex1}^{(2)} \cos[2(\theta_{1} - \theta_{2})] \\ H_{8} &= H_{ex1}^{(1)} \cos(\theta_{1} - \theta_{2}) - 2H_{ex2}^{(1)} \cos[2(\theta_{1} - \theta_{2})] \end{split}$$

The eigenvalue is $-i\omega/\gamma = -i2\pi f_r/\gamma$.

3. The FMR spectra for $t_{\rm Ir}$ =1.2 nm at varying $\theta_{\rm H}$

The ferromagnetic resonance spectra were acquired at varying the magnetic field direction $\theta_{\rm H}$. Since the anisotropy of the gap is larger in the sample with $t_{\rm Ir} = 1.2$ nm, the spectra for $t_{\rm Ir} = 1.2$ nm is presented in Fig. S1. The red circle curves are calculated based on the parameters from Table I and are also plotted in Fig. S1. At low angles like $\theta_{\rm H} = 18^{\circ}$ and 30° (see Fig. S1(a) and (b)), the location of the anticrossing gap closes to the spin-flop field. After spin-flop, the magnetization is not aligned uniformly immediately but after a field window since the broaden distribution of IEC and $H_{\rm u}$. It brings the

disturbance for counted the gap. Therefore, a significant deviation happens due to this

non-uniform.

REFERENCES

- Rezende S M, Chesman C, Lucena M A, Azevedo A, de Aguiar F M and Parkin S S P 1998 Studies of coupled metallic magnetic thin-film trilayers *Journal of Applied Physics* 84 958–72
- [2] Demokritov S O 1998 Biquadratic interlayer coupling in layered magnetic systems *J. Phys. D: Appl. Phys.* **31** 925–41

Fig. S1. FMR spectra for CoFeB(10 nm)/Ir(1.2 nm)/CoFeB(13 nm) at varying θ_{H} , (a)

 $\theta_{H}=18^{\circ}$, (b), $\theta_{H}=30^{\circ}$, (c) $\theta_{H}=45^{\circ}$, (b), $\theta_{H}=70^{\circ}$, respectively. The red circle curves are

calculated based on the parameters from Table I.

Fig. S2. The illustration of VNA-FMR setup. The sample is rotated in in-plane. θ_H is the angle between its easy axis and the external field.