Supporting Information for "Highly-Robust Reentrant Superconductivity in CsV₃Sb₅ under Pressure"

Xu Chen(陈旭)¹[†], Xinhui Zhan(战鑫慧)²[†], Xiaojun Wang(王晓郡)², Jun Deng(邓俊)¹, Xiao-Bing Liu(刘晓兵)^{2*}, Xin Chen(陈欣)², Jian-Gang Guo(郭建刚)^{1,3*}, and Xiaolong Chen(陈小龙)^{1,3*}

¹Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China ²Laboratory of High Pressure Physics and Material Science (HPPMS), School of Physics and Physical Engineering, Qufu Normal University, Qufu 273100, P. R. China ³Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, P. R. China

[†]These authors contributed equally to this work. ^{*}Corresponding authors. Email: <u>xiaobing.phy@qfnu.edu.cn; jgguo@iphy.ac.cn; chenx29@iphy.ac.cn</u>

Phase	Pressure	Lattice parameters	Wuckoff position (fractional)			
	(GPa)	(Å,)	Atoms	Х	у	Z
P6/mmm	0	a = b = 5.49220	Cs(1a)	0.0000	0.0000	0.0000
		c = 9.88870	V(3g)	0.5000	0.5000	0.5000
		$\alpha=\gamma=90.00$	Sb(1b)	0.0000	0.0000	0.5000
		$\beta = 120.00$	Sb(4h)	0.6667	0.3333	0.7292
P6/mmm	5	a = b = 5.42020	Cs(1a)	0.0000	0.0000	0.0000
		c = 8.58070	V(3g)	0.5000	0.5000	0.5000
		$\alpha=\gamma=90.00$	Sb(1b)	0.0000	0.0000	0.5000
		$\beta = 120.00$	Sb(4h)	0.6667	0.3333	0.7612
P6/mmm	10	a = b = 5.3598	Cs(1a)	0.0000	0.0000	0.0000
		c = 8.11750	V(3g)	0.5000	0.5000	0.5000
		$\alpha=\gamma=90.00$	Sb(1b)	0.0000	0.0000	0.5000
		$\beta = 120.00$	Sb(4h)	0.6667	0.3333	0.7734
P6/mmm	20	a = b = 5.25530	Cs(1a)	0.0000	0.0000	0.0000
		c = 7.68210	V(3g)	0.5000	0.5000	0.5000
		$\alpha=\gamma=90.00$	Sb(1b)	0.0000	0.0000	0.5000
		$\beta = 120.00$	Sb(4h)	0.6667	0.3333	0.7840
P6/mmm	40	a = b = 5.10680	Cs(1a)	0.0000	0.0000	0.0000
		c = 7.19870	V(3g)	0.5000	0.5000	0.5000
		$\alpha=\gamma=90.00$	Sb(1b)	0.0000	0.0000	0.5000
		$\beta = 120.00$	Sb(4h)	0.6667	0.3333	0.7940
P6/mmm	60	a = b = 5.01490	Cs(1a)	0.0000	0.0000	0.0000
		c = 6.84900	V(3g)	0.5000	0.5000	0.5000
		$\alpha=\gamma=90.00$	Sb(1b)	0.0000	0.0000	0.5000
		$\beta = 120.00$	Sb(4h)	0.6667	0.3333	0.8000
P6/mmm	100	a = b = 4.85330	Cs(1a)	0.0000	0.0000	0.0000
		c = 6.52460	V(3g)	0.5000	0.5000	0.5000
		$\alpha = \gamma = 90.00$	Sb(1b)	0.0000	0.0000	0.5000
		$\beta = 120.00$	Sb(4h)	0.6667	0.3333	0.8041

Table S1. Change of crystallographic parameters for CsV₃Sb₅ with respect to pressure in the range of 0-100 GPa.

Figure S1. Optical photograph of CsV₃Sb₅ single crystals.

Figure S2. Temperature-dependent resistance of $C_8V_3Sb_5$ at various pressures of 57.1-1.5 GPa,

Figure S3. Pressure dependences of the upper critical field $\mu_0 H_{c2}(0)$ obtained from the linear fitting.

Figure S4. Calculated phonon dispersions and phonon density of states (PHDOS) of CsV₃Sb₅ at 0 GPa.

Figure S5. Calculated phonon dispersions and phonon density of states (PHDOS) of CsV_3Sb_5 at (a) 10 GPa, (b) 20 GPa, (c) 40 GPa, and (d) 60 GPa, respectively.

Figure S6. Pressure versus Raman frequency of CsV₃Sb₅ from phonon dispersions at 10 GPa, 20 GPa, 40 GPa and 60 GPa, respectively.

Figure S7. Pressure-induced Raman changes of CsV₃Sb₅ in the range of 1-53 GPa.

Figure S8. Pressure versus Raman frequency of CsV₃Sb₅ in the range of 1-53 GPa.

Figure S9. Calculated total density of states (DOS) for CsV₃Sb₅ at selected pressures.

Figure S10. The change of lattice parameters (a) and bond lengths (b) with respect to pressure in the range of 0-100 GPa.

Figure S11. Projected crystal orbital Hamiltonian Population (-pCOHP) of CsV_3Sb_5 at (a) 0 GPa, (b) 5 GPa, (c) 20 GPa and (d) 40 GPa, respectively. The values of -pCOHP >0 signify bonding states and the values of -pCOHP <0 signify antibonding states. The Fermi level is set to zero.

Figure S12. The integrated COHP (ICOHP) for V-V, V-Sb1 and V-Sb2 bonds of CsV₃Sb₅ at the range from 0 to 40 GPa.