Supplemental Materials for

Revealing pressure-induced softening/weakening mechanism in representative covalent materials

Tengfei Xu (徐腾飞)^{1, 2}, Shihao Zhang (张世毫)^{1, 2}, Dominik Legut³, Stan Veprek⁴, and

Ruifeng Zhang (张瑞丰)^{1, 2,}*

¹School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China

²Center for Integrated Computational Engineering (International Research Institute for Multidisciplinary Science) and Key Laboratory of High-Temperature Structural Materials & Coatings Technology (Ministry of Industry and Information Technology), Beihang University, Beijing 100191, P. R. China

³IT4Innovations, VSB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava, Czech Republic

⁴Department of Chemistry, Technical University Munich, Lichtenbergstr. 4, D-85747 Garching, Germany

* Corresponding author: zrf@buaa.edu.cn (Ruifeng Zhang)

Fig. S1. Calculated phonon dispersion curves of (a) diamond, (b) c-BN, (c) Si and (d) Ge under zero and high pressures.

Fig. S2. Calculated isosurfaces of the VCDD of (a1)-(a9) diamond, (b1)-(b9) c-BN, (c1)-(c9) Si and (d1)-(d9) Ge under different strains along the $(111)[11\overline{2}]$ shearing path under different pressures. The unit of VCDD is electrons/Bohr³, and a same isosurface level of ±0.0305, ±0.0340, ±0.0375 electrons/Bohr³ is used for diamond under 300, 400 and 500 GPa, ±0.022, ±0.033, ±0.036 for c-BN under 100, 400 and 500 GPa, ±0.008 for Si and ±0.005 for Ge under 0, 2, 10 GPa, respectively. Blue and yellow regions signify the states of charge depletion (negative) and accumulation (position), respectively.

Fig. S4. The COHP curves of the bonds around the slip plane "S0" in (a) Si and (b) Ge under various displacements (u=0.00 and u=0.45) at different pressures.

Table S1. The calculated lattice constant a (in Å), polycrystalline shear (G_{VRH}) and bulk (K_{VRH}) moduli (in GPa), Pugh ratio (G_{VRH}/B_{VRH}), ideal strength σ_{min} and τ_{min} (in GPa) under uniform strain along the weakest [111] tensile and (111)[11 $\overline{2}$] shear direction, respectively, the unstable GSFEs γ_{US} (in J/m²) and Peierls stresses τ_P (in GPa) along the [1 $\overline{10}$] and [11 $\overline{2}$] directions on the shuffle-set and glide-set plane for diamond, c-BN and Si, together with the experimental data and other theoretical values for comparison.

Material	а	G _{VRH}	B _{VRH}	Pugh	σ_{min}	τ_{min}	$\gamma_{US\text{-}shuffle\text{-}[1\bar{1}0]}$	$\gamma_{US\text{-glide}\text{-}[11\bar{2}]}$	$\tau_{P\text{-shuffle-}[1\bar{1}0]}$	$\tau_{P\text{-glide-}[11\tilde{2}]}$
				ratio						
Diamond	3.535	541.34	467.85	1.157	92.33	93.2	9.97	5.77	14.3	14.8
	3.534	543.8	471.18	1.154	95 [2]	93 [2]	9.93 [1]	5.77 [3]	13.3 [3]	19.5 [3]
	[1]	[1]	[1]	[1]						
	3.567	545 [6]	468 [6]	1.165	90.7	93.9	9.72 [3]	5.74 [7]	13.0 [8]	
	[4,5]			[6]	[1]	[1,3]				
c-BN	3.583	402.73	403.22	0.999	65.4	65.3	7.47	3.76	10.83	2.83
	3.583	403.51	404.41	0.998	64.9	65.2 [3]	7.44 [3]	3.79 [3]	12.4 [3]	3.79 [3]
	[1]	[1]	[1]	[1]	[3]					
	3.62		400		65.9	64.9 [1]	7.20 [8]	3.43 [8]	10.3 [8]	3.73 [8]
	[9]		[10]		[1]					
Si	5.403	63.24	96.83	0.6531	20.97	7.25	1.45	1.82	1.3	14.28
	5.39	56.6	97.9		19.2	7.8 [8]	1.67 [14]	1.91 [14]	1.7 [8]	10-26[15]
	[11]	[12]	[13]		[8]					
	5.375	57.9	99.2		22 [2]	6.8 [2]		1.89 [16]	0.6-2.8	
	[12]	[11]	[8]						[15]	
Ge	5.65	47.12	72.35	0.6513	14.38	5.08	1.10	1.55	0.60	13.78
	5.65	46 [17]	83 [17]	0.5542	14 [2]	4.3 [2]	1.20 [18]		0.4-0.5	
	[17]			[17]					[18]	
	5.66	47 [19]	77 [19]	0.6104		5.4 [17]				
	[19]			[19]						

Reference

[1] Zhang S H, Legut D, Fu Z H, Germann T C and Zhang R F 2018 Carbon 137 156

[2] Roundy D and Cohen M L 2001 Phys. Rev. B 64 212103

[3] Zhang S H, Legut D, Germann T C, Veprek S, Zhang H J and Zhang R F 2020 Phys. Rev. B 101 014104

[4] Straumanis M E and Aka E Z 1951 J. Am. Chem. Soc. 73 5643

[5] Hom T, Kiszenik W and Post B 1975 J. Appl. Crystallogr. 8 457

[6] Wang J Q, Zhao C X, Niu C Y, Sun Q and Jia Y 2016 J. Phys. Condes. Matter 28 475402

[7] Zhang S H, Fu Z H and Zhang R F 2019 Comput. Phys. Commun. 238 244

- [8] Zhang S H, Zheng X, Jin Q Q, Zheng S J, Legut D, Yu X H, Gou H Y, Fu Z H, Guo Y Q, Yan B M,
- Peng C, Jin C Q, Germann T C and Zhang R F 2018 Phys. Rev. M 2 123602
- [9] Kern G, Kresse G and Hafner J 1999 Phys. Rev. B 59 8551
- [10] Grimsditch M, Zouboulis E S and Polian A 1994 J. Appl. Phys. 76 832
- [11] Ogata S, Li J, Hirosaki N, Shibutani Y and Yip S 2004 Phys. Rev. B 70 104104
- [12] Umeno Y and Kitamura T 2002 Mater. Sci. Eng., B 88 79
- [13] Fukumoto A 1990 Phys. Rev. B 42 7462
- [14] Kaxiras E and Duesbery M S 1993 Phys. Rev. Lett. 70 3752
- [15] Wang S, Zhang H, Wu X and Liu R 2010 J. Phys. Condens. Matter 22 055801
- [16] Joos B, Ren Q and Duesbery M S 1994 Phys. Rev. B 50 5890
- [17] Umeno Y and Cerny M 2008 Phys. Rev. B 77 100101
- [18] Zhang H L 2011 Eur. Phys. J. B 81 179
- [19] McSkimin H J 1953 J. Appl. Phys. 24 988