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I. QAOA

The QAOA was developed by Farhi, Goldstone, and Gutmann[1]. It gives a way to solve approximately in polyno-
mial time combinatorial optimization problems such as the Max-Cut problem, the traveling salesman problem, and
the 3-SAT problem .

The QAOA can be regarded as a simplified version of an adiabatic evolution, which involves the continuous evolution
of a quantum state from a ground state of a Hamiltonian to a ground state of another Hamiltonian. As the QAOA is
discrete, it drives the ground state of one Hamiltonian to the ground state of another Hamiltonian in discrete steps.
In the respect, the QAOA is an approximation algorithm. In general, the output state of the QAOA is just close
to the ground state of the target Hamiltonian. The QAOA quantum circuit has a parameterization. Changing the
parameters of the circuit adjusts the direction of each step of the QAOA. In particular, the QAOA quantum circuit
can be written

U(γ⃗, β⃗) =

n∏
j=1

e−iHdβje−iHpγj , (1)

where n denotes the QAOA step number, and Hp the problem Hamiltonian. For a specific problem, the ground state
of Hp is the solution of the problem. Hd is the drive Hamiltonian of the QAOA, the initial state of the QAOA being
the ground state of Hd. Generally, we define Hd in the form

Hd =
∑
i

−Xi, (2)

where X represents the Pauli X matrix. The initial state of the QAOA is then |ϕin⟩ = |+⟩⊗m, m being the qubit
number of the QAOA quantum circuit, and γ⃗ and β⃗ the two [n, 1] parameter vectors. The purpose of the QAOA
is to find the optimal values of γ⃗ and β⃗ that ensures the output quantum state is closest to the ground state of the
problem Hamiltonian Hp. Generally, we use a classical optimization algorithm to find the optimal γ⃗ and β⃗. The cost
function is the expectation of Hp and may be written

f(γ⃗, β⃗) = ⟨ϕin|U†(γ⃗, β⃗)HpU(γ⃗, β⃗)|ϕin⟩. (3)

When solving specific problems, the whole execution of the QAOA comprises five steps:

(1) Construct problem Hamiltonian Hp. The ground state of Hp is the solution of the problem.

(2) Use Hp,Hd to construct the QAOA quantum circuit—the initial values of γ⃗ and β⃗ may be chosen randomly.

(3) Execute QAOA quantum circuit multiple times and compute the cost function f(γ⃗, β⃗) = ⟨Hp⟩.

(4) Optimize γ⃗ and β⃗ to minimize the cost function f(γ⃗, β⃗) with the classical optimization algorithm.

(5) Execute the optimized QAOA quantum circuits multiple times—the optimal result is the solution of the problem.
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II. SIMULATION METHOD

In our numerical simulations, we use a noisy quantum virtual machine (QVM) in the quantum programming archi-
tecture for the NISQ-device application (QPanda) as our noisy quantum simulator[2]. QPanda’s noisy QVM supports
all kinds of quantum noise models. Users can also define their own quantum noise model. QPanda also contains the
variational quantum network (VQNet)—a framework to construct quantum-classical hybrid neural networks[3]. We
use VQNet to realize the QAOA.

A. Noisy Simulator

First, we introduce the method of QPanda’s noisy QVM. In noisy quantum circuits, the quantum state is a mixed
state and represented by a density matrix. In QPanda’s noisy QVM, we still use the state vector to represent
the quantum state and combine the Monte Carlo method to simulate mixed-state evolution under noisy quantum
operations[4]. The specific method is as follows:

(1) Assume the input state is a pure state denoted by |ϕ⟩ and U a unitary quantum gate; the quantum noise is
represented by Kraus operators K = {Ki}, i = 1, 2, ..., s.

(2) Compute pi = ⟨ϕ|K†
iKi|ϕ⟩, i = 1, 2, ..., s. We note that

∑
i pi = 1.

(3) Generate a uniformly distributed random number r in the range [0, 1), then find l that satisfies
l−1∑
i=1

pi ≤ r ≤
l∑

i=1

pi. (4)

Here we assume
∑0

i=1 pi = 0.

(4) The expression for the evolution of state |ϕ⟩ is

|ϕl⟩ → U
1

√
pl
Kl|ϕ⟩. (5)

(5) Repeat procedure (2) ∼ (4) M times. Ml is the number of times that Kl was selected. When M is large enough,
we know that Ml ≈ Mpl, and hence the output quantum state ρ becomes

ρ ≈
∑
i

Ml

M
|ϕl⟩⟨ϕl|. (6)

The noisy QVM realized by this method needs to run the quantum circuit multiple times. The density matrix of
the output state may then be computed approximately from the statistical distribution of the results of multiple runs.

B. VQNet

We use VQNet to realize QAOA. VQNet supports ideal and noisy QVM. The flow chart of QAOA is shown in
Fig. S1. γ⃗ and β⃗ are QAOA quantum circuit parameters, “Variational Quantum Circuit” represents the QAOA
quantum circuit, “Quantum Operator” is a basic operator in VQNet, and the inputs of “Quantum Operator” are the
“Variational Quantum Circuit” and the “Graph Hamiltonian”. The output is the expectation of the input Hamiltonian
after running the “Variational Quantum Circuit”. The VQNet supports back propagation to get the derivatives of the
cost function with respect to γ⃗ and β⃗. We then use the gradient descent algorithm to optimize parameters γ⃗ and β⃗.
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FIG. S1: QAOA Flow Chart
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