
Supplementary Materials

Yunqing Ouyang (欧阳云卿),1, 2 Qing-Rui Wang (王晴睿),3, ∗ Zheng-Cheng Gu (顾正澄),4, † and Yang Qi (戚扬)1, 2, 5, ‡

1State Key Laboratory of Surface Physics, Fudan University, Shanghai 200433, China
2Center for Field Theory and Particle Physics, Department of Physics, Fudan University, Shanghai 200433, China

3Department of Physics, Yale University, New Haven, CT 06511, USA
4Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China

5Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
(Dated: November 17, 2021)

CONTENTS

I. Motivation: Zn-SPT in 2D 1

II. Algebraic description 2
A. Classifying space and resolution 2
B. Chain map 4
C. Coboundary check 5

III. Application to SPT Classification 6
A. Computing obstruction function 6
B. Solving cocycle equations 7

IV. Physical interpretation 8

V. Inhomogeneous cocycles 9

VI. The integral group ring 9

VII. Smith Normal Form 9

VIII. Cup and higher-cup products 10

IX. The SptSet Package 11

References 11

I. MOTIVATION: Zn-SPT IN 2D

We first motivate our method using the task of identi-
fying the cohomology class of a cocycle, with the example
of a simple cyclic group Zn. In this case, cocycles in the
simplified basis are related to the topological invariants
used in previous studiess [1].

In particular, we consider the task of checking whether
the result of an obstruction function is a trivial or
nontrivial cocycle. (For the definition of cocycles and
their cohomology classes, see Sec. II A.) Instead of using
coboundary equations for the inhomogeneous cochains
directly, which results in a large computational cost, we

∗ Present address: Yau Mathematical Sciences Center, Tsinghua
University, Beijing 100084, China

† zcgu@phy.cuhk.edu.hk
‡ qiyang@fudan.edu.cn

construct topological invariants. In general, a (d + 1)-
cocycle α ∈ Hd+1[G,U(1)] can be interpretted as a d-
dimensional bSPT state. In fact, such a cocycle can
be used to construct partition functions on any closed
(d + 1)D manifold M , with arbitrary symmetry fluxes
of G inserted in noncontractible loops of M [2]. Such
a combination of closed (3+1)D manifold and symmetry
fluxes is knwon as a G-bundle. A trivial 4-cocycle, rep-
resenting a trivial SPT phase, gives a partition function
that evaluates to the trivial value of +1 on any G-bundle;
a nontrivial cocycle, on the other hand, evaluates to non-
trivial values on some nontrivial G-bundles.

Furthermore, only a few number of representative G-
bundles need to be checked, each detecting one root coho-
mology class in Hd+1[G,U(1)]. If the partition function
is trivial on all these G-bundles, the corresponding cocy-
cle is trivial.

τ

τ
µ

µ

µ

(a)

a

a
a

a

a3

1

1

a

a

a2

a2

a3

a

(b)

FIG. 1. The lens space L4(1). (a) L4(1) constrcuted by glu-
ing the upper and lower hemispheres of a 3-ball. The up-
per hemisphere is first rotated by 90 degrees before glued to
the lower hemisphere, as indicated by the red marks on both
hemispheres, which are glued together. L4(1) has one 3-cell,
which is the interior of the ball; it has one 2-cell, which is the
upper hemisphere or the lower hemisphere (they are identi-
fied during the gluing); it has one 1-cell, which is one of the
segments τ on the equator shown in thick lines with arrows
(the equator is divided into four segments, which are identi-
fied with each other after the gluing); it has one 0-cell, which
is the starting and the ending point of τ and labeled by µ. (b)
A triangulation (∆-complex decomposition) of L(4, 1), and a
flat connection realzing the nontrivial symmetry flux along τ .

To demonstrate this procedure, we consider (2+1)D

mailto:zcgu@phy.cuhk.edu.hk
mailto:qiyang@fudan.edu.cn

2

manifolds, which are easy to illustrate, and a simple sym-
metry group: the cyclic group G = Zn = ⟨a|an = 1⟩.
This example also appeared in Ref. [1]. For this sim-
ple case, the (2+1)D bSPT phases are classified by
H3[G,U(1)] = Zn. Hence, there is only one root state,
and one corresponding representative G-bundle. This G-
bundle is illustrated in Fig. 1 for the case of n = 4. The
base manifold of this G-bundle is constructed by starting
from a solid 3-ball and gluing the two hemispheres on the
surface of the ball in the following twisted way: the up-
per hemisphere is rotated by an angle of 2π/n, reflected
with respect to the equator, and glued to the lower hemi-
sphere. Consistent with this gluing, the equator can be
divided evenly into n segments, which are identified with
each other. Consequently, the starting and end points of
each segment are also identified as the same point, and
the segment becomes a noncontractible loop. The gluing
creates a closed 3-manifold M , which is known as the
lens space Ln(1) in mathematics [3]. This manifold has a
nontrivial first homotopy group π1(M) = Zn, generated
by the noncontractible loop τ shown on Fig. 1(a). The
G-bundle has a nontrivial symmetry flux a (a labels the
generator of the Zn group) along this loop.

We now evaluate on this G-bundle the partition func-
tion constructed from a 3-cocycle α ∈ H3[G,U(1)]. We
assume that α is computed as an inhomogeneous cocycle.
As explained in details in Sec. V, an inhomogeneous 3-
cocycle can be used to construct partition functions on a
simplicial complex with a flat gauge connection, which is
basically a triangulated space consists of many tetrahedra
(3-simplices). The gauge connection consists of gij ∈ G
assigned to each edge [vivj] in the complex, satisfying two
constraints: First, the total flux going around a triangle
[vivjvk] must vanish: gijgjk = gik. Second, the total flux
going around a noncontractible loop in π1(M) must pro-
duce the assigned symmetry flux in the G-bundle. On
such a simplicial-complex realization of the G-bundle, a
partition function of the SPT phase represented by the
cohomology class α is constructed by multiplying weights
associated with each tetrahedron: on one tetrahedron,
denoted by its four vertices as [v0v1v2v3], the weight is
given by

exp {±2πi⟨α, [v0v1v2v3]⟩} = exp {±2πiα(g01, g12, g23)} .
(1)

Here, the overall sign in the phase is plus (minus) if the
orientation of the simplex is positive (negative), respec-
tively.

Therefore, in order to evaluate the partition function
on the G-bundle in Fig. 1(a), we must first decompose
it into a simplicial complex, and assign a choice of flat
connection gij . One particular construction is given in
Fig. 1(b). It is then straightforward to compute the par-
tition function:

Z = exp

2πi

n∑
j=1

α(a, aj , a)

 . (2)

This partition function detects the classification of the

SPT states: the trivial SPT phase gives Z = +1, while
the root state of nontrivial SPTs gives Z = ei2π/n. There-
fore, it can be used as a topological invariant to determine
the cohomology class of the cocycle α. In general, the
value of Z can be Z = ei2πk/n, where k = 0, 1, . . . , n− 1
indicates the cohomology class of α. In practice, the
cohomology class of an inhomogeneous cocycle can be
determined by evaluating such topological invariants in-
stead of solving the cocycle equations of the inhomoge-
neous cocycles, which is a time-consuming task. In the
rest part of the paper, we will introduce automated proce-
dures to construct such topological invariants for generic
discrete groups.

II. ALGEBRAIC DESCRIPTION

In this section, we describe a general algorithm for con-
structing topological invariants. Physically, the topolog-
ical invariants are constructed from evaluating the par-
tition functions on representative G-bundles. Hence, the
algorithm contains two parts: First, one chooses repre-
sentative G-bundles by constructing the classifying space
of G, denoted by BG. Second, a triangulation of the G-
bundles is computed by constructing a cellular map from
BG to a standard simplicial realization of BG. These
two steps are discussed in Secs. II A and II B, respec-
tively. Finally, in Sec. II C, we combine the two steps
and construct an algorithm for constructing the invari-
ants that check the trivialness of a cocycle. Although the
algorithm has a nice interpretation in terms of evaluating
SPT partition functions on G-bundles, the derivation of
the chain map can be described purely algebraically. For
conciseness, we only discuss the algebraic construction of
the algorithm in this section, and defer the discussion of
physical interpretation to Sec. IV.

A. Classifying space and resolution

The classifying space of G, denoted by BG, is a topo-
logical space satisfying the following conditions: its first
homotopy group (or the fundamental group) is π1(BG) =
G, and all its higher homotopy groups vanish: πk(BG) =
0, k > 1. Closely related to BG, the universal bundle
EG, is also the universal cover of BG. Since the fun-
damental group of BG is G, EG can be viewed as a
topological space with a free action of G, and BG is the
quotient space BG = EG/G.
EG is called the universal bundle, because any G-

bundle can be constructed as a pullback bundle from
its base space BG. As a result, a cohomology class
on BG can be used to define partition functions on
all possible G-bundles. This leads to the conclu-
sion that d-dimensional bSPT phases are classified by
Hd+1[BG,U(1)] = Hd+1[G,U(1)]. In fact, in the real
computation, we do not need all geometric details of BG
and EG. Instead, only the cellular chain complex of EG

3

is needed. Here, we review the algebraic structure of
this chain complex, which is also known as a free ZG-
resolution (of Z).

Mathematically, we construct EG as a CW-complex,
which is a model of topological spaces widely used in
algebraic topology, especially in the theory of singular
homology. The precise definition of a CW-complex can
be found in Appendix A of Ref. [3]. Roughly speaking, a
CW-complex is made by gluing cells of different dimen-

sions, where each d-dimensional cell, or a d-cell for short,
is homeomorphic to a d-dimensional disk. We denote the
collection of d-cells in the CW-complex EG as (EG)d.

In singular-homology theory, a d-chain is a formal sum-
mation of d-cells, with integral coefficients. Hence, the
space of d-chains, denoted by Cd(EG), is a Z-module
with basis in (EG)d. Since G has a free action on EG,
the modules Cd(EG) are actually free ZG-modules. Fur-
thermore, they form the following long exact sequence
under the boundary map,

· · · → Ck(EG)
∂k−→ Ck−1(EG) → · · · → C1(EG)

∂1−→ C0(EG)
ϵ−→ Z → 0. (3)

This long exact sequence is known as the augmented
chain complex of EG.

In practice, we only need to keep track of the algebraic
structure of the chain complex above. From this view
point, we have free ZG-modules Fd = Cd(EG) forming a
long exact sequence,

· · · → Fk
∂k−→ Fk−1 → · · · → F1

∂1−→ F0
ϵ−→ Z → 0. (4)

This is called an augmented free ZG-resolution.
The exactness of the sequences in Eqs. (3) and (4) fol-

lows the fact that the space EG is contractible. Math-
ematically, this means that the identity map from EG
to itself is homotopic to the zero map that maps EG to
an empty space. Such a homotopy equivalence between
these two maps is called a contracting homotopy, and it
plays an essential role in the construction of chain maps
in Sec. II B. Algebraically, a contracting homotopy s is a
collection of Z-linear maps from each module Fk to the
module in one higher dimension, Fk+1, as shown in the
following diagram:

Fk+1 Fk Fk−1

Fk+1 Fk Fk−1

∂k+1 ∂k

idsk sk−1
∂k+1 ∂k

(5)

This is not a commutative diagram. Instead, the maps
satisfy the following condition,

∂k+1sk + sk−1∂k = id . (6)

In other words, the anticommutator between s and ∂
is id, which can be understood as the difference between
the identity map and the zero map. Hence, this indicates
that s is a homotopy between these two maps. We em-
phasize that s is Z-linear but not ZG-linear in general,
meaning that it does not commute with group action:
sk(g · x) ̸= g · sk(x).

Algebraically, Eq. (6) implies that s can be viewed
as an “inverse” of the boundary map: For a closed k-
chain x ∈ Fk, the condition ∂kx = 0 simplifies Eq. (6)

to ∂k+1sk(x) = x. Hence, sk(x) is a (k + 1)-chain that
borders x. This immediately proves the exactness of the
sequence in (4), because every cycle x is a boundary of
sk(x). This operation of finding the inverse of the bound-
ary map using a contracting homotopy will also play a
vital role in the construction of chain maps in Sec. II B.

Once a resolution is constructed for a group G, it
can be used to compute the group-cohomology classifi-
cation and the invariants of the cocycles. The k-cochains
are defined as ZG-linear maps from Fk to the coeffi-
cient module M , and space of k-cochains is denoted by
Ck(G,M) = HomG(Fk,M). Here, the subscript G indi-
cates that the cochains are invariant under the action of
G:

⟨α, gx⟩ = g⟨α, x⟩. (7)

In this paper, we use greek letters to denote cochains.
The bracket ⟨α, x⟩ denotes evaluating the linear map α
on the element x ∈ Fk. The result of the bracket is a
coefficient ⟨α, x⟩ ∈ M , and g⟨α, x⟩ denotes the G-action
on M .

The boundary map ∂k : Fk → Fk−1 naturally induces
a coboundary map dk−1 : Ck−1(G,M) → Ck(G,M):

⟨dk−1α, x⟩ = ⟨α, ∂kx⟩. (8)

Using the coboundary maps, we can define the k-cocycles,
which are k-cochains satisfying dkα = 0, and the k-
coboundaries, which are the coboundary of (k − 1)-
cochains, α = dk−1β. The spaces of k-cocycles and k-
coboundaries are Zk(G,M) = ker dk and Bk(G,M) =
img dk−1, respectively. The property that ∂k∂k+1 = 0,
or the boundary of a boundary is empty, implies that
dkdk−1 = 0. This ensures that Bk(G,M) is a submodule
of Zk(G,M), and allows us to define the k-th cohomology
of G as the quotient of the two modules,

Hk(G,M) =
Zk(G,M)

Bk(G,M)
=

ker dk
img dk−1

. (9)

We emphasize that the cochain space Ck(G,M), the re-
sulting spaces Zk(G,M) and Bk(G,M) all depend ex-
plicitly on the choice of the resolution F . However,

4

the resulting group-cohomology modules Hk(G,M) do
not depend on the choice of the resolution. More pre-
cisely speaking, group-cohomology modules computed
using different resolutions are naturally isomorphic to
each other.

In the rest of this section, we give two examples to
demonstrate the concept of free resolutions and their con-
tracting homotopy. In the first example, we show how
the inhomogeneous cocycles, which are widely used in

physics literatures, can be expressed using this language.
In fact, in math literatures, the corresponding resolution
is called the bar resolution [4], which we shall denote
by F̄ . This type of resolution can be constructed for
an arbitrary group G. In the resulution F̄ , the module
F̄k is spanned by the ZG basis of the following form,
[g1|g2| · · · |gk], where gi ∈ G. The boundary operator is
given as the following,

∂k[g1| · · · |gk] = g1[g2| · · · |gk] +
k−1∑
i=1

(−1)i[g1| · · · |gi−1|gigi+1|gi+2| · · · |gk] + (−1)k[g1| · · · |gk−1]. (10)

Using this basis, a k-cochain α is represented as a func-
tion ⟨α, [g1| · · · |gk]⟩. Rewritten as α(g1, . . . , gk), this is

the inhomogeneous cochain used in physics literatures.
Eq. (10) gives the familiar coboundary operation of the
inhomogeneous cochains,

(dkα)(g1, . . . , gk+1) =g1α(g2, . . . , gk+1) +

k∑
i=1

(−1)iα(g1, . . . , gigi+1, . . . , gk+1)

+ (−1)k+1α(g1, . . . , gk).

(11)

The bar resolution has the following contracting ho-
motopy s̄:

s̄k(g0[g1| · · · |gk]) = [g0|g1| · · · |gk]. (12)

We notice that, as expected, the map s̄k does not com-
mute with the G-action. It is straightforward to check
that s̄ satisfies the condition in Eq. (6). Hence, it is a
contracting homotopy, which confirms that F̄k forms a
long-exact sequence. This contracting homotopy will be
used in Sec. II B to map inhomogeneous cochains to other
basis.

The bar resolution can be cumbersome to work with,
since the number of ZG basis in each module F̄k grows
exponentially with k, rankZG F̄k = |G|k. It is well known
that one can slightly improve this by eliminating the ba-
sis elements where any one of the group element gi is
1, the identity element of G. Equivalently, in terms of
inhomogeneous cocycles, one can always use coboundary
equivalence to set α(g1, . . . , gk) = 0 if any gi = 1. The re-
sulting resolution is called the normalized bar resolution
in mathematical literatures. In the rest of this paper, we
will use F̄ and s̄ to denote the normalized bar resolution
of a group G and the associated contracting homotopy,
respectively.

As an example, we examine the free resolution con-
structed by this algorithm for the Zn group, which is the
chain complex of the infinite-dimensional lens space [3].
In this resolution, each Fk is generated by only one ZG-

basis, denoted by ek. The boundary operator is given as
the following,

∂e2k−1 = (a− 1)e2k−2,

∂e2k =
(
1 + a+ a2 + · · ·+ an−1

)
e2k−1.

(13)

Here, a denotes the generator of Zn satisfying an = 1.
The algorithm in HAP also constructs the following con-
tracting homotopy of this resolution.

s2k−1 (a
me2k−1) = δm,n−1e2k,

s2k (a
me2k) =

(
1 + a+ · · ·+ am−1

)
e2k+1.

(14)

Again, the map sk does not commute with the G-action.

B. Chain map

The resolution and its contracting homotopy con-
structed by HAP already allow us to do a wide ranges of
group-cohomology calculations, including computing the
classification of the group cohomology, and computing
the cup and higher-cup products [5–7]. However, there
are still functions of cocycles that can only be conve-
niently expressed using the inhomogeneous cochains [8,
9]. The reduced resolution can still help us simplify the
computation of these functions: We first compute the co-
cycle functions using inhomogeneous cochains, then map

5

the resulting inhomogeneous cocycles to the reduced reso-
lution using a chain map, which we shall construct in this
section. In general, the chain maps between the two res-
olutions allow us to map cocycles between the two basis.
In the next section, we shall see that these chain maps
can help us reduce the computational cost of calculating
fSPT classifications.

A chain map f between two resolutions F and F ′, f :
F → F ′, is a collection of ZG-linear maps fk : Fk → F ′

k,
such that the following diagram commutes,

· · · Fk Fk−1 · · · F0 Z

· · · F ′
k F ′

k−1 · · · F ′
0 Z

∂k+1 ∂k

fk

∂k−1

fk−1

∂1 ϵ

f0 id
∂′
k+1 ∂′

k ∂k−1 ∂′
1 ϵ′

(15)
Here, we describe an algorithm of constructing a chain

map f : F → F ′ between two free ZG-resolutions, using
a contracting homotopy s′ of F ′. The construction is
recursive. First, at the lowest level, f−1 : Z → Z is
simply the identity map. Next, we assume that the map
fk−1 has been constructed, and proceed to construct fk.
We choose a ZG-basis of Fk, ek,i. Eq. (15) demands that
fk satisfies

∂′
kfk(ek,i) = fk−1(∂kek,i).

It is straightforward to check that the r.h.s is closed.
Hence, as discussed in Sec. II A, Eq. (6) implies that we
can choose the image of ek,i to be

fk(ek,i) = s′k−1fk−1(∂kek,i). (16)

We then extend fk linearly to Fk.
We notice that, even with a given s′, the chain map

f constructed above is not unique. It depends on the
choice of the basis in each Fk, because the contracting
homotopy s′ does not commute with the G-action. How-
ever, different choices of f are homotopically equivalent
to each other, as we shall see explicitly in Sec. III B.

Actually, in the above construction, only the contract-
ing homotopy s′ of the second resolution F ′ is used.
Therefore, the chain map can be constructed from an ar-
bitrary chain complex F made of free-G- modules, even
if F is not contractible.

Using a chain map f : F → F ′, one can map a cocycle
in the basis of F ′ to one in the basis of F , using the
pullback map f∗. For a cochain α′ ∈ HomG(F

′,M), its
image f∗(α) is given by the following relation,

∀x ∈ F, ⟨f∗(α), x⟩ = ⟨α, f(x)⟩. (17)

In particular, in this work, we usually consider chain
maps between two types of resolutions of G: F is a re-
duced resolution given by the algorithm in HAP, and F̄ is
the normalized bar resolution discussed in Sec. II A. We
denote the two chain maps between them by f : F → F̄
and g : F̄ → F , respectively. Since both F and F̄ have

explicit contracting homotopies, both f and g can be
constructed recursively using the algorithm in Eq. (16).

We end this section with an example of computing the
chain maps. Again, we consider the finite cyclic group
G = Zn. Its reduced resolution F , derived from the chain
complex of the lens space, is given in Sec. II A, along with
a contracting homotopy.

We now demonstrate the construction of f : F → F̄ .
First, since both F0 and F̄0 are simply ZG with one basis,
f0 just maps the basis e0 ∈ F0 to the basis [·] ∈ F̄0.
(Recall that basis in Fn are labeled by n group elements.
Hence, the single basis of F0 is labeled by zero group
element, and denoted by [·].) Next, we use Eq. (16) to
construct f1:

f1(e1) = s0f0(∂e1) = s0(a[·]− [·]) = [a]. (18)

Similarly, we can proceed and compute f2 and f3 recur-
sively,

f2(e2) = [a|a] + [a2|a] + · · ·+ [an−1|a], (19)
f3(e3) = [a|a|a] + [a|a2|a] + · · ·+ [a|an−1|a], (20)

f4(e4) =

n−1∑
i,j=1

[ai|a|aj |a]. (21)

Next, we demonstrate constructing g : F̄ → F . Com-
paring to f , the results are more lengthy. Hence, we only
compute the first two dimensions, which are used in the
example of the main text. Similar to f0, g0 also maps the
single basis [·] in F̄0 to the single basis e0 in F0. Next,
we compute g1:

g1([a
i]) = s0g0(∂[a

i]) = s0(a
ie0−e0) = (1+ · · ·+ai−1)e1.

(22)
In the last step, we used the contracting homotopy of the
resolution in Eq. (14). Next, we compute g2:

g2([a
i|aj]) = s1g1(∂[a

i|aj]) = s1g1(a
i[aj]− [ai+j] + [ai])

= s1
{
(1 + · · ·+ ai+j−1)e1 − (1 + · · ·+ al−1)e1

}
,

(23)

where l = i+ j mod n. Hence, if i+ j < n, we have l =
i+ j, andthe above equation vanishes. If n ≤ i+ j < 2n,
we have l = i+ j − n, and the above equation gives

g2([a
i|aj]) = s1

{
(al−1 + · · ·+ al+n−1)e1

}
= e2.

Combing these two cases, we have

g2([a
i|aj]) =

⌊
i+ j

n

⌋
e2, (24)

where ⌊(i+ j)/n⌋, meaning the greatest integer less than
or equal to (i+j)/n, is 0 (1) if i+j < (≥)n, respectively.

C. Coboundary check

As we discussed in Sec. I, the most time-consuming
task of computing an SPT classification is to check

6

whether a obstruction function, which is a cocycle, is a
trivial coboundary or not. Such an obstruction cocycle is
often expressed as an inhomogeneous cocycle. Checking
whether a cocycle is a coboundary using the normalized
bar resolution is quite time-consuming, since the size of
the coboundary matrix is (|G| − 1)n by (|G| − 1)n+1. In
contrast, performing the coboundary check is much easier
using the reduced resolution F , because the dimensions
of the G modules Fn and Fn+1 are much smaller.

Hence, we propose the following approach for checking
whether an inhomogeneous cocycle ᾱ ∈ Z̄n(G,M) is a
coboundary. First, we construct a reduced resolution F ,
and the chain map f : F → F̄ . Second, we map ᾱ to
a cocycle α ∈ HomG(F,M), using the pullback map, as
α = f∗(ᾱ). Finally, we check whether the cocycle α is
trivial, using the reduced resolution F .

To be more concrete, this approach can be imple-
mented using the following algorithm. To check the
trivialness of a n-cocycle α, we use the Smith normal
form of the coboundary map dn−1 : HomG(Fn−1,M) →
HomG(Fn,M). The Smith normal form reveals a set of
invariants identifying nontrivial cocycles:

Ik =
∑
i

ak,i⟨α, en,i⟩. (25)

A nonvanishing Ik ̸= 0 indicates that the cocycle α is
not a coboundary. The details of obtaining these invari-
ants from the Smith normal form of dn−1 are reviewed
in Sec. VII. Next, we express the invariants Ik with ᾱ,
using the chain map f . Using Eq. (17), we write α(en,i)
as ᾱ(f(en,i)), and the invariants in Eq. (25) as

Ik =
∑
i

ak,i⟨ᾱ, f(en,i)⟩. (26)

Finally, we compute each Ik using the entries of ᾱ, and
check if all Ik vanish. Any nonvanishing Ik indicates
that ᾱ is a nontrivial cocycle. Since F is usually much
smaller than F̄ (to be more precise, the dimensions of Fn,
rankZG Fn, are much smaller than that of F̄n), this algo-
rithm can save significant computational costs comparing
to the naive approach using only the inhomogeneous co-
cycles.

We will demonstrate this algorithm and the saving on
computational costs using the example of checking a 3-
cycle for a cyclic group G = Zn. As we see in Sec. II A,
the modules Fk only have one ZG-basis ek. The bound-
ary operator ∂ : F3 → F2 is given by ∂e3 = (x − 1)e2.
Hence, the corresponding coboundary operator is sim-
ply a one-by-one matrix. If the coefficient module is
M = U(1) with a trivial G-action, the coboundary
operator d2 : HomG[F2,U(1)] → HomG[F3,U(1)] van-
ishes: d2 = 0. Hence, there is no nontrivial coboundary
equivalence, and any cocycle with a nonvanishing entry
α(e3) ̸= 0 is a nontrivial cocycle. In other words, to check
the trivialness of a cocycle, we need to examine one in-
variant I1 = ⟨α, e3⟩. Using the chain map in Eq. (20),
we express this invariant in terms of the inhomogeneous

cocycle ᾱ,

I1 =

n−1∑
j=1

ᾱ(a, aj , a). (27)

This is directly related to the partition function in
Eq. (2): the partition function is Z = e2πiI1 . This
demonstrates that computing the invariants in Eq. (26)
is equivalent to computing the partition functions on the
representative G-bundles discussed in Sec. I.

III. APPLICATION TO SPT CLASSIFICATION

A. Computing obstruction function

We combine the algorithms introduced in Sec. II to
compute the obstruction functions that appear in fSPT
classification.

As an example, we discuss the obstruction function
O5[n2] in the classification of (3+1)D fSPT, which maps a
Majorana decoration pattern, represented by a 2-cocycle
n2 ∈ H2[Gb,Z2], to an obstruction class represented by
a 5-cocycle in H5[Gb,U(1)T]. Here, we consider the sim-
ple case, where the total symmetry group Gf is a di-
rect product of the bosonic symmetry group Gb and the
fermion-parity symmetry Zf

2 . The more general cases
where Gf is a nontrivial group extension of Gb over Zf

2

can be computed in a similar manner.
In terms of inhomogeneous cochains, the obstruction

function is constructed in the following steps [8]: First,
one computes the O4[n2] obstruction function, given by
the following formula,

O4[n2] = n2 ∪ n2. (28)

The cup product in this equation is defined in Sec. VIII.
We then check whether the obstruction O4[n2] vanishes,
meaning that it is a coboundary. This is because if it
is a nontrivial cocycle, such n2 will lead to violation of
fermion-parity conservation and does not represent con-
sistent Majorana-chain decorations in a 3D fSPT state.
Second, if O4[n2] is a trivial coboundary, we need to find
a solution of the equation

dn3 = O4[n2] = n2 ∪ n2. (29)

Third, using the solution n3, one can compute the ob-
struction O5, Eq. (220) in [8], One then needs to check
if the computed O5 is a trivial cocycle.

Although to our best knowledge, the obstruction func-
tion O5 can only be expressed using inhomogeneous cocy-
cle, this calculation can be accelerated using the reduced
resolution and the algorithms presented in previous sec-
tions. First, we enumerate all cohomology classes n2 in
H2[G,Z2] using cochains in the reduced resolution. Next,
we map n2 to an inhomogeneous cochain, n̄2 = g∗n2.
This allows us to compute O4[n̄2] using the cup-product

7

formula in Sec. VIII directly. We then check whether
it is a trivial obstruction class using the algorithm in
Sec. II C. (In this step, the cup product can also be com-
puted directly in the reduced resolution, by constructing
a diagonal approximation using the contracting homo-
topy, as described in Sec. VIII.) If O4[n̄2] is trivial, we
can construct a solution of Eq. (29) using the algorithm
in Sec. III B. We then compute O5 and check its trivial-
ness using the algorithm in Sec. II C.

The computational cost can be further reduced using
lazy evaluation, which is a commonly used method in
programming and can be easily implemented in modern
programming languages. We demonstrate the use of lazy
evaluation using the example of O5 and G = Zn. Naively,
to check if O5 is trivial, one first computes ᾱ = O5 and
then check its trivialness. Since there are (|G| − 1)5 =
(n− 1)5 entries of ᾱ, the cost of this step scales as (n−
1)5. However, using the algorithm in Sec. II C, one only
needs to check that all topological invariants Im vanish.
Following the steps in Sec. II B, one finds that there is
only one invariant, given by

I =
∑

1<i,j<n

ᾱ(a, ai, a, aj , a). (30)

This invariant envolves only (n − 1)2 entries of ᾱ.
Therefore, only these entries need to be computed from
Eq. (220) in [8] Skipping the rest of the entries reduces
the computational cost from O[(n − 1)5] to O[(n − 1)2].
In practice, one only passes the functional form of ᾱ
given by Eq. (220) in [8] instead of all its entries, to
the trivialness-checking procedure. This procedure then
constructs the invariants and computes the cochain en-
tries on the fly when they are needed. This practice of
deferring the evaluation of the entries until their values
are needed is called lazy evaluation in programming. In
this way, both CPU and memory costs are saved.

B. Solving cocycle equations

The reduced resolution can also be used to accelerate
the task of finding one solution of the cocycle equation,

dβ̄ = ᾱ, (31)

where α is a (k+1)-coboundary (otherwise this equation
has no solution). This task can also be time-consuming
using the inhomogeneous cocycles, as the matix form of
Eq. (31) has dimension (|G| − 1)k × (|G| − 1)k+1.

Naively, one may try to solve Eq. (31) by mapping ᾱ to
a cochain in the reduced resolution using the pullback of
the chain map f : F → F̄ as α = f∗ᾱ, find a solution β =
dα there, and map it back to an inhomogeneous cocycle
as g∗β, using g : F̄ → F . However, g∗β constructed this
way is not a solution of Eq. (31), because the two chain
maps f and g are not the inverse of each other. In fact,
the composition fg cannot be the identity map, because
the modules F̄k have higher dimensions than Fk. Instead,

fg is only homotopic to the identity map, meaning that it
can be related to identity using a homotopy h : fg ∼ id.

A homotopy h is a degree-1 map: hk : F̄k → F̄k+1,
illustrated by the following diagram,

· · · F̄k+1 F̄k F̄k−1 · · ·

· · · F̄k+1 F̄k F̄k−1 · · ·

∂k+1 ∂k

hk hk−1
∂k+1 ∂k

(32)

Here, the verticle arrows represent the difference between
fg and identity, fkgk − idF̄k

. The diagram is not a com-
mutative diagram: it instead satisfies

∂k+1hk + hk−1∂k = fkgk − idF̄k
. (33)

For given chain maps f and g, the homotopy h can also be
constructed recursively using the contracting homotopy
s of F , in the following way similar to the algorithm in
Sec. II B.

Similar to the construction in Sec. II B, this is done
recursively. For simplicity, we assume that both F0 and
F̄0 has only one ZG basis. Therefore, f0 and g0 simply
maps between the two unique basis, and consequently
f0g0 is exactly the identity map. As a result, we can
choose h0 = 0 because there is nothing to correct. This
is the starting point of our construction. Next, we assume
that hk−1 has been constructed, and proceed to construct
hk. We take a ZG-basis ei of F̄k, and the property (33)
demands that

∂hk(ei) = −hk−1∂ei + fkgk(ei)− ei. (34)
We notice that the r.h.s. of this equation can be com-
puted from existing constructions. A solution of Eq. (34)
can be found using the contracting homotopy s̄ of the
resolution F̄ ,

hk(ei) = s̄k[−hk−1∂ei + fkgk(ei)− ei]. (35)
We can then extend hk linearly to F̄k.

The homotopy h can be used to construct a solution
of Eq. (31), as it corrects the difference between fg and
identity. Since it is a degree-1 map hk : F̄k → F̄k+1, its
pullback maps a (k + 1)-cochain ᾱ to a k-cochain h∗ᾱ.
We can use it to augment g∗β and construct a solution
as

β̄ = g∗β − h∗ᾱ. (36)
We now prove that this is indeed a solution of Eq. (31).

Consider any x ∈ F̄k+1. Using the definition of the pull-
back maps, we get

⟨dβ̄, x⟩ = ⟨dβ, g(x)⟩ − ⟨ᾱ, h(∂x)⟩. (37)
Since dβ = α, we get
⟨dβ̄, x⟩ = ⟨α, g(x)⟩−⟨ᾱ, h◦∂(x)⟩ = ⟨ᾱ, f◦g(x)⟩−⟨ᾱ, h◦∂(x)⟩.

(38)
Using Eq. (33), we get

⟨dβ̄, x⟩ = ⟨ᾱ, x⟩+ ⟨ᾱ, ∂ ◦ h(x)⟩. (39)
Since dᾱ = 0, the second term in r.h.s. vanishes. Hence,
we conclude that dβ̄ = ᾱ.

8

IV. PHYSICAL INTERPRETATION

In Sec. II, we describe an algebraic algorithm that
generates the topological invariants differentiating SPT
phases. The invariants generated by the algorithm co-
incide with the partition functions evaluated on hand-
picked representative G-bundles. In this section, we give
an interpretation of the connection between the two. For
simplicity, we assume that G is a finite unitary symme-
try group, and thus consider the group cohomology with
U(1) coefficients. The results can be easily generalized
to include antiunitary symmetry operations, and infinite
groups.

We first review the connection between SPT states
and group cohomology computed from an arbitrary res-
olution. A k-cocycle α ∈ HomG[Fk,U(1)], which is a
cocycle in Hk[BG,U(1)], can be viewed as an action,
mapping each k-cell σ ∈ BGk to a U(1) phase factor
⟨α, σ⟩. Because EG is a universal bundle, such an ac-
tion can be used to construct a partition function for
any G-bundle over a k-dimensional orientable space-time
manifold B [2]. For simplicity, we also assume B is con-
nected. Because G is a finite discrete group, the gauge
connection on B must vanish. Therefore, the G-bundle
is specified by the symmetry flux through each noncon-
tractible loop in B, which can be expressed as a group
homomorphism γ : π1(B) → G. Since π1(BG) = G, γ
is also a homomorphism γ : π1(B) → π1(BG). Because
all higher homotopy groups of BG vanish, γ can be fur-
ther uniquely (up to homotopy) extended to a cellular
map γ : B → BG. Algebraically, the cellular map γ
is a chain map from the chain complex of B to that of
BG, which is the resolution F . Such a chain map can be
constructed using the algorithm in Sec. II B, using a con-
tracting homotopy of F . In particular, γ maps each k-cell
σ ∈ Bk to an algebraic sum of k-cells in BG, denoted by
γ(σ). Intuitively, this can be viewed as a decomposition
of σ ∈ Bk using cells in BG. One can then evaluate α on
each cell in γ(σ), and define the sum of the evaluations
as the value of the action on σ. Mathematically, this
is expressed as ⟨γ∗α, σ⟩ = ⟨α, γ(σ)⟩, where γ∗(α) is the
pullback of α by γ, which is a cochain on B, and can be
viewed as an action induced by α defined on B. Finally,
one can integrate γ∗α on B, and construct the following
partition function,

Z = exp(2πi⟨γ∗α, [B]⟩). (40)

Here, [B] denotes the fundamental class of B [3], which
is an algebraic sum of all k-cells of B, with signs given
by comparing the orientation of each cell to a global ori-
entation of B.

In particular, when we take F to be the bar resolution,
γ : B → BG can be viewed as a simplicial decomposi-
tion, or a triangulation, of B: the image γ([B]) gives an
algebraic sum of all simplices in such a decomposition,

γ([B]) =
∑

si0···ik [vi0 · · · vik].

Hence, Eq. (40) becomes the following function,

Z = exp

2πi
∑

[vi0 ···vik]

si0···ik ᾱ(gi0i1 , . . . , gik−1ik)

 ,

(41)
where gij is the gauge connection on the 1-cell ij. For a
cocycle ᾱ, the above partition function is independent of
the choices of gij , as long as the total symmetry flux

∏
gij

along noncontractible loops stays the same. Therefore,
one can sum over all possible choices of gij and obtain
the familiar form of SPT-state partition function,

Z =
∑
gij

exp

2πi
∑

[vi0 ···vik]

si0···ik ᾱ(gi0i1 , . . . , gik−1ik)

 .

(42)
Next, we notice that the invariants Il introduced in

Sec. II C can be viewed as partition functions of rep-
resentative G-bundles. Each bundle is based on a k-
dimensional space-time manifold Bl, with a decomposi-
tion γl : B → BG. In particular, the fundamental class
maps to γl([Bl]) =

∑
i al,ien,i. The invariant Il is then

given by

Il = ⟨γ∗
l α, [Bl]⟩. (43)

Using Eq. (40), we see that the partition function Z is
given by exp(Il).

As an example, we revisit the representative G-bundle
studied in Sec. I. In fact, the manifold in Fig. 1(a) can be
viewed as a CW-complex with one 3-cell, one 2-cell, one
1-cell and one 0-cell, respectively (see the caption of the
figure). Since the manifold is the three-dimensional lens
space L3(1) and BG is the infinite-dimensional lens space
L3(1, 1, 1, . . .), the chain map γ : B → BG maps each k-
cell to the single k-cell in BG, which corresponds to the
single generator of Fk discussed in Sec. II A. In particular,
the fundamental class of B is mapped to e3. Hence, the
partition function in Eq. (40) is given by Z = e2πiI1 ,
where I1 = ⟨α, e3⟩.

Finally, the chain map f : F → F̄ can be viewed as
a simplicial decomposition, or a triangulation, of cells in
the CW-complex BG, whose chain complex is given by
F . In fact, f can be viewed as a special case of celluar
maps between a G-bundle and a classifying space of G, as
f : BG → BG. Here, BG and BG denote a CW-complex
and a simplicial complex, respectively, both serving as
classifying spaces of G, and their chain complexes are
given by F and F̄ , respectively. Consequently, the com-
position f ◦ γl : B → BG gives a triangulation of the
manifold Bl, and the partition function

Z = exp{2πi⟨(f◦γl)∗α, [Bl]⟩} = exp{2πi⟨(f∗α, γl([Bl])⟩}
(44)

then computes the partition function on Bl using the
inhomogeneous cocycle ᾱ = f∗α.

Combining the above understanding, we see that the
invariants computed in Sec. II C are the partition func-

9

tion of the representative G-bundles, computed from in-
homogeneous cocycles using a triangulation. In partic-
ular, the triangulation is constructed algebraically using
the chain map f : F → F̄ . Such constructions are per-
formed automatically by the algorithm in Sec. II.

V. INHOMOGENEOUS COCYCLES

In this section, we review the inhomogeneous cocycles,
a tool widely used to compute the cohomology of finite
groups and to construct SPT classification.

An inhomogeneous n-cochain α ∈ Cn(G,M) is a func-

tion mapping n group elements g1, . . . , gn to a coefficient
α(g1, . . . , gn) ∈ M . Here, M is a ZG module, refered to
as the coefficient module of the group cohomology. The
most common coefficient we encounter in SPT classifi-
cation is the U(1)T module: In our notation, the U(1)
module is actually a real number modulo one, which is
often denoted as R/Z. Physically, it represents a U(1)
phase factor. The subscript T denotes how the symme-
try group G acts on this module: g · ϕ = −ϕ if g is an
antiunitary operation, like the time-reversal symmetry T .

The coboundary operator dn : Cn(G,M) →
Cn+1(G,M) maps a n-cochain to a (n+ 1)-cochain, and
it is defined as the following,

(dα)(g1, . . . , gn+1) =g1α(g2, . . . , gn+1)− α(g1g2, g3, . . . , gn+1) + α(g1, g2g3, . . . , gn+1)

+ · · ·+ (−1)nα(g1, . . . , gngn+1) + (−1)n+1α(g1, g2, . . . , gn).
(45)

VI. THE INTEGRAL GROUP RING

In this section, we briefly review the basic concepts of
the integral group ring ZG, and a free ZG module.

For any group G, we construct the integral group ring
ZG as follows. The elements of ZG are formally linear
combination of group elements with integral coefficients,
x =

∑
g∈G xgg, xg ∈ Z. The addition and multiplication

between two elements x =
∑

g∈G xgg and y =
∑

g∈G ygg
are given by

x+ y =
∑
g∈G

(xg + yg)g,

xy =
∑

g,h∈G

xgyh(gh),

respectively. It is straightforward to check that ZG is a
ring.

For an arbitrary ring R, a free R-module M can be
understood as an analog of a linear space, with coeffi-
cients in R instead. The module M can be generated by
a R-basis, denoted by ei.

VII. SMITH NORMAL FORM

In this section, we briefly review the Smith normal
form (SNF) of an integral matrix, which is used in
Sec. II C.

We consider an n × m matrix over Z: A = Aij . Its
SNF is a decomposition into three matrices, L, R and Λ,
such that

LAR = Λ, (46)

where L and R are n×n and m×m unimodular matrices,
respectively, and Λ is a diagonal matrix of dimensions

n ×m. As unimodular matrices, the inverse matrices of
L and R are also integral matrices.

As an application of the SNF, we consider the cobound-
ary condition α = dβ. Here, d is the coboundary map
dn−1 : HomG[Fn−1,U(1)] → HomG[Fn,U(1)]. Assume
that rankZG Fn−1 = m and rankZG Fn = n, respectively,
and denote a set of ZG basis of Fn−1 and Fn by eni and
en−1
i , respectively. A cochain α in HomG[Fn,U(1)] is

represented as a vector αi using its components on eni ,
αi = ⟨α, eni ⟩. Similarly, a cochain β in HomG[Fn−1,U(1)]
is represented as a vector βi using its components on
en−1
i , βi = ⟨β, en−1

i ⟩. The coboundary map α = dn−1β
can then be represented as a matrix Ai

j , such that

αi =

m∑
j=1

Aijβj , (47)

According to Eq. (8), the explicit form of Ai
j can be ob-

tained by expanding ∂eni on basis of en−1
j ,

∂eni =

m∑
j=1

Aije
n−1
j . (48)

Here, the group-element coefficients are converted to
numbers using the group action on the coefficients.

To solve Eq. (47) and check if α is a coboundaries, we
find the SNF of matrix A given by Eq. (46). As a result,
Eq. (47) is changed into

Lα = Λβ′, (49)

where β′ = R−1β. Since R is unimodular, going through
all possible β is equivalent to going through all possible
β′. Hence, α is a coboundary if and only if there is a
β′ such that Eq. (49) holds. Therefore, we consider each
row in the matrix equation (49), which has the following

10

form,
n∑

j=1

Lijαj = Λiiβ
′
i. (50)

For each diagonal element Λii = 0, the LHS of Eq. (50)
defines an invariant, which we denote by Ij ,

Ii =

m∑
j=1

Lijαj . (51)

Since Λii = 0, Eq. (50) implies that a coboundary must
satisfy Ii = 0. Therefore, a nonvanishing Ii ̸= 0 indicates
that α is not a coboundary.

VIII. CUP AND HIGHER-CUP PRODUCTS

In this section, we briefly review the concept of cup
products and higher-cup products in group-cohomology

theory, which appears frequently in formulas computing
the classification of fSPT and SET phases.

The cup product is a group-cohomology operation that
maps a pair of cocycles to another cocycle. The mathe-
matical definition of cup products can be found in Chap.
V of Ref. [5]. In particular, it maps a p-cocycle and a
q-cocycle to a (p+ q)-cocycle:

∪ : Hp(G,M1)×Hq(G,M2) → Hp+q(G,M3). (52)

Here, in general, M1, M2 and M3 are three different G-
modules, with a bilinear form B : M1 ×M2 → M3.

As we discuss in Sec. II A, cocycles in a cohomology
group can be expressed using different resolutions of G.
Using the inhomogeneous cocycles, the cup product is
given by the following explicit form,

α ∪ β(g1, . . . , gp+q) = B[α(g1, . . . , gp), g1 · · · gp · β(gp+1, . . . gp+q)]. (53)

In fact, this definition provides a cup product on the
inhomogeneous cochains,

∪ : Cp(G,M1)× Cq(G,M2) → Cp+q(G,M3). (54)

The ∪ product satisfies the well-known Leibniz formula,

d(α ∪ β) = dα ∪ β + (−1)deg αα ∪ dβ. (55)

This implies that if both α and β are cocycles, α ∪ β is
also a cocycle, which is consistent with Eq. (52).

On an arbitrary resolution F over ZG, the definition
of a cup product is not as straightforward as Eq. (53).
In general, it requires constructing a so-called diagonal
approximation ∆, which is a chain map ∆ : F → F ⊗ F .
Here, F ⊗F is the tensor product of F with itself, with a
diagonal G-action. Using such a diagonal approximation,
one can define a cup product similar to Eq. (54):

∪ : HomG(Fp,M1)×HomG(Fq,M2) → HomG(Fp+q,M3).
(56)

(See Chap V of Ref. [5] for the details of the diagonal
approximation and cup products.) In particular, the cup
product defined using a diagonal approximation also sat-
isfies Eq. (55). As a result, it also gives a cup product
between cohomology classes as in Eq. (52). It is impor-
tant to notice that the cup product defined in Eq. (56)
is not unique, as there are many possible choices of the
diagonal approximation. However, different choices of F
and diagonal approximations always lead to the same cup
product between cohomology classes in Eq. (52).

In practice, for an arbitrary resolution R, a cup prod-
uct can be constructed in the following steps: First, con-
struct the tensor product F⊗F with a diagonal G-action.
Second, construct a chain map ∆ : F → F ⊗ F , which
serves as a diagonal approximation, using the algorithm
in Sec. II B. Last, a cup product is constructed using this
diagonal approximation. These steps can construct a cup
product without the help of inhomogeneous cocycles. Al-
ternatively, using the ideas in Sec. III A, one can compute
the cup product by first mapping the cocycles to inho-
mogeneous cocycles, computing the cup product using
Eq. (53), and then mapping the result back. In general,
we expect the first approach to be more efficient, because
it skips the intermediate steps involving inhomogeneous
cocycles. However, in practice, we choose to use the sec-
ond approach. This is because there are usually more
complicated obstruction functions that cannot be written
entirely in terms of cup products (and higher cup prod-
ucts), which takes much longer to compute and can only
be computed using the method in Sec. III A. Therefore,
the computational cost is not a big issue here. Conse-
quently, we choose the second approach because it has a
uniform realization with other obstruction functions.

The higher cup products can be defined in a similar
way. First, for inhomogeneous cocycles, there are ex-
plicit definitions of the higher cup products, which can
be found in Ref. [6]. A cup-k product maps a p-cochain
and a q-cochain to a (p+ q − r)-cochain,

∪k : Cp(G,M1)× Cq(G,M2) → Cp+q−k(G,M3). (57)

In particular, ∪0 is nothing but the cup product defined

11

above. Below, we give the explicit form of ∪1 and ∪2, which were used in obstruction functions for fSPTs.

(α ∪1 β)(g1, . . . , gp+q−1) =

p−1∑
i=0

(−1)(p−i)(q+1)

B[α(g1, . . . , gi, gi+1 · · · gi+q, gi+q+1, . . . , gp+q−1), g1 · · · giβ(gi+1, . . . , gi+q)].

(58)

(α ∪2 β)(g1, . . . , gp+q−2) =
∑

0≤i<j≤p

(−1)(p−i)(j−i+1)B[α(g1, . . . , gi, gi+1 · · · gj , gj+1, . . . , gj−i+p),

g1 · · · giβ(gi+1, . . . , gj , gj+1 · · · gj−i+p, gj−i+p+1, . . . gp+q−2)].

(59)

The cup-k product satisfies the following relation (Thm. 5.1 of Ref. [6]),

d(α ∪k β) = (−1)p+q−kα ∪k−1 β + (−1)pq+p+qβ ∪k−1 α+ dα ∪k β + (−1)pα ∪k dβ. (60)

As a result, the ∪k product gives a product between co-
homology classes,

∪k : Hp(G,M1)×Hq(g,M2) → Hp+q−k(G,M3). (61)

The higher cup products can also be constructed on an
arbitrary resolution, without using the inhomogeneous
cocycles. This is done using the higher diagonal approxi-
mations [7]. The higher diagonal approximations are se-
ries of homotopy equivalences, which can be constructed
recursively using the method in Sec. III B. This allows us
to compute higher cup products without going through
the inhomogeneous cocycles. However, in practice, we
choose to use the approach of mapping to/from the in-

homogeneous cocycles, for similar reasons as in the case
of the cup product.

IX. THE SPTSET PACKAGE

The algorithm described in this work is implemented
in the package SptSet for the GAP software. It can be
used to compute the classification of fSPT states pro-
tected by 2D wallpaper groups, which is listed in the
main text. Once the package is installed following the
instruction on its website, the results can be computed
by running the script in examples/fspt_2d_ez.g and ex-
amples/fspt_2d_s12.g, respectively. The full design and
functionality of this package will be reported elsewhere.

[1] N. Tantivasadakarn, Phys. Rev. B 96, 195101 (2017).
[2] R. Dijkgraaf and E. Witten, Comm. Math. Phys. 129, 393

(1990).
[3] A. Hatcher, Algebraic topology (Cambridge University

Press, 2002).
[4] D. Joyner, (2007), arXiv:0706.0549 [math.GR].
[5] K. S. Brown, Cohomology of groups, Vol. 87 (Springer Sci-

ence & Business Media, 2012).

[6] N. E. Steenrod, Annals of Mathematics 48, 290 (1947).
[7] J. F. Davis, in Algebraic and Geometric Topology, edited

by A. Ranicki, N. Levitt, and F. Quinn (Springer Berlin
Heidelberg, Berlin, Heidelberg, 1985) pp. 51–61.

[8] Q.-R. Wang and Z.-C. Gu, Phys. Rev. X 10, 031055
(2020).

[9] G. Brumfiel and J. Morgan, (2018), arXiv:1803.08147
[math.GT].

https://doi.org/10.1103/PhysRevB.96.195101
https://projecteuclid.org:443/euclid.cmp/1104180750
https://projecteuclid.org:443/euclid.cmp/1104180750
https://arxiv.org/abs/0706.0549
http://www.jstor.org/stable/1969172
https://doi.org/10.1007/BFb0074438
https://doi.org/10.1103/PhysRevX.10.031055
https://doi.org/10.1103/PhysRevX.10.031055
https://arxiv.org/abs/1803.08147
https://arxiv.org/abs/1803.08147

