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I. Magnetoconductivity tensor 

Our simulation is based on Boltzmann diffusive transport theory, which is valid 

when the mean free path 𝑙𝑒  is much smaller than the size of the system 𝐿. In the 

linear response approximation, the Boltzmann equation in zero magnetic field leads to 

Ohm’s law, 

𝑱 = 𝜎0𝑬,                          (1) 

where 𝑱 , 𝜎0  and E are the electric field, conductivity, and current density, 

respectively. The conductivity is given by 𝜎0 = 𝑛𝑞2𝜏 𝑚∗ , with 𝑛, 𝑞, 𝜏 and 𝑚∗ 

being the carrier density, carrier charge, momentum relaxation time, and effective 

mass, respectively. This result is an upgraded version of the classical Drude formula, 

and hence can be easily generalized to the case of finite magnetic fields. In this case, 



the current density satisfies 

𝑱 = 𝜎0 𝑬 + 𝒗d × 𝑩 ,                     (2) 

with 𝒗d =
𝑞𝜏

𝑚∗ 𝐄 being the drift velocity. Suppose magnetic field 𝑩 is applied in the z 

direction, i.e. 𝑩 =  0,0, 𝐵 , we have 

𝐽𝑥 = 𝜎0𝐸𝑥 + 𝜇𝐻𝐵𝐽𝑦 ,                   (3. a) 

𝐽𝑦 = 𝜎0𝐸𝑦 − 𝜇𝐻𝐵𝐽𝑥 ,                   (3. b) 

𝐽𝑧 = 𝜎0𝐸𝑧 .                        (3. c) 

Here 𝜇𝐻 of 𝑞𝜏 𝑚∗  is the Hall mobility. Solving Eq. (3. a), (3. b), and (3. c) gives 

𝑱 = 𝝈𝑬 with 

𝝈 𝑩 =
𝜎0
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2
 ,         (4) 

where the Hall coefficient is given by 𝑅H = 1 𝑛𝑞 . 

 

II. Four-point resistances of standard Hall bars 

 

A sketch of a standard Hall bar is shown in Fig. S1. In such a device geometry, the 

current distribution is barely influenced by the voltage probes. The four-point 

resistances in a conventional 3D thin film can be straightforwardly evaluated with 

𝑅𝑥𝑥 =
𝑉1−𝑉2

𝐼
= 𝜌𝑥𝑥

𝑙

𝑤𝑑
, and 𝑅𝑦𝑥 =

𝑉3−𝑉1

𝐼
=

𝜌𝑦𝑥

𝑑
, where l is the distance between the 

two neighboring voltage probes, 𝑤 is the width, and d is the thickness of the Hall bar.  

Fig. S1. Schematic illustration of a standard Hall bar. 



 

For a Hall bar based on a 3D topological insulator (TI) flake or thin film, the 

relations between the resistivities and the four-point resistances are not given in the 

main text. For the longitudinal transport, the contributions of all conduction 

components, the top and bottom surfaces, the front and back side surfaces, and the 

bulk layer need to be included. If the resistivity is identical for all surfaces, the Hall 

resistance 𝑅𝑥𝑥,H  satisfies 
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𝑙
.         (5) 

Here, 𝜌𝑥𝑥 ,surf  and 𝜌𝑥𝑥 ,bulk  are the longitudinal resistivities of the surface and the 

bulk, respectively. As for the transverse resistance, there is no perpendicular magnetic 

field component, so that the two side surfaces do not contribute. For the bulk 

resistivities of interest to this work, 
𝜌𝑥𝑥 ,bulk

𝑑
≫ 𝜌𝑥𝑥 ,surf , most of the current distributes 

on the surface, and according to the two-band model, the contribution of the bulk 

layer to the Hall resistance can also be neglected for weak magnetic fields. In case of 

symmetric top and bottom surfaces, we then have  

𝑅𝑦𝑥 ,H ≡
𝑉3−𝑉1

𝐼
= 𝜌𝑦𝑥 ,surf 2 .                 (6) 

in which the surface Hall resistivity is give by 𝜌𝑦𝑥 ,surf = 𝑅H,surf 𝐵, where 𝑅H,surf  is 

the Hall coefficient of the surface states. 

 


