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A. The symmetry restrictions on the magnetic
interactions

As mentioned in the maintext, the microscopic mag-
netic model with proper parameters is extremely impor-
tant. Note that the crystal symmetry impose restriction-
s on the magnetic model and its parameters. Here we
consider a general pairwise spin model as shown in the
maintext

H =
∑

l,n,l′,n′

Sln · JRl+τn,Rl′+τn′ · Sl′n′ (1)

where JRl+τn,Rl′+τn′ , a 3 × 3 tensor, represents the
spin exchange parameters. Rl and τn represent the
lattice translation vector and the position of magnetic
ions in the lattice basis, and Sl′n′ means the spin at
the site of Rl + τn Translation symmetry will restrict
JRl+τn,Rl′+τn′ to be only related to Jτn,τn′+Rl′′ where
Rl′′ = Rl′ − Rl, irrespective of the starting unit cell.
Other spatial symmetries will also give restrictions on
the magnetic exchange interactions (MEIs). We consid-
er a general space group element {α|t}, where the left
part represents the rotation and the right part means
the lattice translation. Supposing under this symmetry
operator, Rm + τ p and Rm′ + τp′ transfer to Rl + τn
and Rl′ + τn′ , respectively, meanwhile the transforma-
tion of spin becomes Smp = M(α)Sln, where M(α) is the
representation matrix of the proper rotation part of the
operation α in the coordinate system, we get the follow-
ing expression:

H =
∑

l,n,l′,n′

Sln · JRl+τn,Rl′+τn′ · Sl′n′

=
∑

l,n,l′,n′

SlnM
†(α)M(α)JRl+τn,Rl′+τn′M

†(α)M(α)Sl′n′

=
∑

m,p,m′,p′

Smp ·M(α)JRl+τn,Rl′+τn′M
†(α) · Sm′p′ (2)

Then the exchange interactions should satisfy the fol-
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lowing condition:

JRm+τp,Rm′+τp′ = M(α)JRl+τn,Rl′+τn′M
†(α) (3)

After decomposing the 3×3 tensor J into scalar Heisen-
berg term J and vector DM term D as in the maintext,
we obtain the following results:

JRm+τp,Rm′+τp′ = JRl+τn,Rl′+τn′

DRm+τp,Rm′+τp′ = M(α)DRl+τn,Rl′+τn′ (4)

Meanwhile, it is should be noted that the Heisenberg
and DM interactions obey the following commutation re-
lations

JRl′+τn′ ,Rl+τn
= JRl+τn,Rl′+τn′

DRl′+τn′ ,Rl+τn
= −DRl+τn,Rl′+τn′ (5)

According to the above equations (i.e. Eq. (4) and
(5)), one can obtain the symmetry restricted MEIs for
any space group. Similarly, for the magnetic space group,
the symmetry restriction on MEIs can also be easily ob-
tained. The collinear ferromagnetic system shown in
maintext (i.e. BNS 85.59 case) have two generators: the
four-fold rotation {4+001|1/2, 0, 0} and inversion operation
{1|0, 0, 0}. The magnetic ion located at τ1 position has
only two nearest neighbors, i.e. (τ 1, τ 5 + R−100) pair
and (τ 1, τ 6 + R0−10) pair as shown in Table I. These
two bonds are equivalent by the inversion symmetry
{1|0, 0, 0}. Meanwhile, performing the four-fold rotation
symmetry for the above two pairs, we can get other six
pairs in a unit cell, and there are in total eight NN in a
unit cell. Based on Eq. (4), it is also easy to prove all of
these eight NN exchange paths has the same Heisenberg
term, which we denote as J1 as shown in Table I. The
non-collinearity shown in maintext reduces the four-fold
rotation {4+001|1/2, 0, 0} to the two-fold rotation opera-
tion {2001|1/2, 1/2, 0}, as a result the eight NN exchange
path is no longer equivalent as indicated in Table I. Simi-
larly, one can obtain the symmetry restriction on the DM
interactions, as also shown in Table I.

For simplicity, we only list the corresponding MEIs for
longer range with the collinear FM example (i.e. the case
with symmetry of BNS 85.59) and non-collinear example
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TABLE I. The distances and the bond information of corresponding MEIs (with Rcut = 0.5 a) for the non-collinear magnetic
example in the maintext (i.e. the case with symmetry of BNS 13.65). We also list the results by using the symmetry of BNS
85.59, which is applicable for the collinear FM case as well as the non-collinear case with localized magnetism in the right part.

distance(a) n n′ Rl BNS 13.65 BNS 85.59
0.35 1 5 (−1, 0, 0) J1 (Dx

1 , D
y
1 , D

z
1) J1 (Dx

1 , D
y
1 , D

z
1)

1 6 (0,−1, 0) J1 (Dx
1 , D

y
1 , D

z
1) J1 (Dx

1 , D
y
1 , D

z
1)

2 5 (0, 0, 0) J2 (Dx
2 , D

y
2 , D

z
2) J1 (−Dy

1 , D
x
1 , D

z
1)

2 6 (0,−1, 0) J2 (Dx
2 , D

y
2 , D

z
2) J1 (−Dy

1 , D
x
1 , D

z
1)

3 5 (−1, 0, 0) J2 (−Dx
2 ,−Dy

2 , D
z
2) J1 (Dy

1 ,−Dx
1 , D

z
1)

3 6 (0, 0, 0) J2 (−Dx
2 ,−Dy

2 , D
z
2) J1 (Dy

1 ,−Dx
1 , D

z
1)

4 5 (0, 0, 0) J1 (−Dx
1 ,−Dy

1 , D
z
1) J1 (−Dx

1 ,−Dy
1 , D

z
1)

4 6 (0, 0, 0) J1 (−Dx
1 ,−Dy

1 , D
z
1) J1 (−Dx

1 ,−Dy
1 , D

z
1)

0.36 1 7 (0, 0, 0) J3 (Dx
3 , D

y
3 , D

z
3) J2 (Dx

2 , D
y
2 , D

z
2)

1 8 (−1,−1, 0) J3 (Dx
3 , D

y
3 , D

z
3) J2 (Dx

2 , D
y
2 , D

z
2)

2 7 (0, 0, 0) J4 (Dx
4 , D

y
4 , D

z
4) J2 (−Dy

2 , D
x
2 , D

z
2)

2 8 (0,−1, 0) J4 (Dx
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4 , D
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x
2 , D
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4 , D
z
4) J2 (Dy

2 ,−Dx
2 , D

z
2)

3 8 (−1, 0, 0) J4 (−Dx
4 ,−Dy

4 , D
z
4) J2 (Dy

2 ,−Dx
2 , D

z
2)

4 7 (0, 0, 0) J3 (−Dx
3 ,−Dy

3 , D
z
3) J2 (−Dx

2 ,−Dy
2 , D

z
2)

4 8 (0, 0, 0) J3 (−Dx
3 ,−Dy

3 , D
z
3) J2 (−Dx

2 ,−Dy
2 , D

z
2)

0.5 1 2 (0, 0, 0) J5 (Dx
5 , D

y
5 , D

z
5) J3 (Dx

3 , D
y
3 , D

z
3)

1 2 (−1, 0, 0) J5 (Dx
5 , D
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5 , D

z
5) J3 (Dx

3 , D
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3)

1 3 (0, 0, 0) J6 (Dx
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6) J3 (−Dy

3 , D
x
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1 3 (0,−1, 0) J6 (Dx
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6) J3 (−Dy

3 , D
x
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3)
2 4 (0, 0, 0) J6 (Dx
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6) J3 (−Dy
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3)
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6) J3 (−Dy
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3 , D

z
3)

3 4 (0, 0, 0) J5 (Dx
5 , D

y
5 ,−Dz

5) J3 (Dx
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TABLE II. The corresponding MEIs for the collinear FM ex-
ample (i.e. the case with symmetry of BNS 85.59) and non-
collinear example (i.e. the case with symmetry of BNS 13.65)
shown in maintext.

BNS 85.59 BNS 13.65
J1 J1, J2

J2 J3, J4

J3 J5, J6

J4 J7, J8

J5˜J7 J9˜J14

J8 J15, J16

J9, J10 J17˜J20

J11, J12 J21˜J24

J13˜J15 J25˜J28

J16 J29, J30

J17, J18 J32˜J34

J19 J35, J36

J20, J21 J37˜J40

J22 J41, J42

J23 J43, J44

J24˜J27 J45˜J52

in the maintext (i.e. the case with symmetry of BNS
13.65), as shown in Table II.

It is worth mentioning that Eq. (3) can also give sym-
metry restrictions on SIA. The general quadratic expres-

sion of SIA could be written as
∑
l,n,α,βK

α,β
Rl+τn

SαlnS
β
ln.

Note that the SIA term should be naturally symmet-

ric, i.e. Kα,β
Rl+τn

= Kβ,α
Rl+τn

. According to Eq. (3),

when the action of symmetry operation {α|t} keeps
the position Rl + τn unchanged, we have KRl+τn

=
M(α)KRl+τn

M†(α). For the typical FM collinear mag-
netic material (BNS 85.59) in the maintext, the SIA term
for magnetic ions located at 2a and 2c Wyckoff positions
should satisfy that

KRl+τn
=

 Kxx
Rl+τn

Kxx
Rl+τn

Kzz
Rl+τn


which is actually the usual form HSIA =∑
l,nKRl+τn(Szln)2 + C where KRl+τn =

Kzz
Rl+τn

− Kxx
Rl+τn

and C represents the constant
term. However, the symmetry does not give restrictions
on the SIA term of magnetic ions at 4d position. In the
maintext, we adopt the usual form HSIA =

∑
l,nK(Szln)2

for simplicity.

B. The parameters An,n′ , Bn,n′ , Cn,n′ , On,n′ , Pn,n′

and Qn,n′

In the maintext, considering the spin model includ-
ing the Heisenberg and DM interactions, we perform
the standard LSWT and obtain spin Hamiltonian as Eq.
(4) in the maintext, where the parameters An,n′ , Bn,n′ ,
Cn,n′ , On,n′ , Pn,n′ and Qn,n′ are related to the spin di-
rections at n and n′ sites. Here An,n′ , Bn,n′ and Cn,n′
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could be written as:

An,n′ =
1

4
cos(θn − θn′)− 1

4
cos(θn + θn′) +

1

2
cos(φn − φn′)

+
1

8
cos(θn − θn′ + φn − φn′)

+
1

8
cos(θn + θn′ + φn − φn′)

+
1

8
cos(θn − θn′ − φn + φn′)

+
1

8
cos(θn + θn′ − φn + φn′)

+
i

4
sin(θn + φn − φn′) +

i

4
sin(θn′ + φn − φn′)

− i
4

sin(θn − φn + φn′)− i

4
sin(θn′ − φn + φn′) (6)

Bn,n′ = sin θn sin θn′ cos(φn − φn′) + cos θn cos θn′ (7)

Cn,n′ =
1

4
cos(θn − θn′)− 1

4
cos(θn + θn′)− 1

2
cos(φn − φn′)

+
1

8
cos(θn − θn′ + φn − φn′)

+
1

8
cos(θn + θn′ + φn − φn′)

+
1

8
cos(θn − θn′ − φn + φn′)

+
1

8
cos(θn + θn′ − φn + φn′)

− i
4

sin(θn + φn − φn′) +
i

4
sin(θn′ + φn − φn′)

+
i

4
sin(θn − φn + φn′)− i

4
sin(θn′ − φn + φn′) (8)

Meanwhile, the parameters On,n′ =
(Oxn,n′ , O

y
n,n′ , Ozn,n′), Pn,n′ = (P xn,n′ , P

y
n,n′ , P zn,n′)

and Qn,n′ = (Qxn,n′ , Q
y
n,n′ , Qzn,n′) related to the spin

directions at n and n′ sites could be written as:

Oxn,n′ =
1

2
[− cos θn sin θn′ sinφn + sin θn cos θn′ sinφn′

+i(sin θn cosφn′ + sin θn′ cosφn)] (9)

P xn,n′ = sin θn cos θn′ sinφn − cos θn sin θn′ sinφn′ (10)

Qxn,n′ =
1

2
[− cos θn sin θn′ sinφn + sin θn cos θn′ sinφn′

+i(sin θn cosφn′ − sin θn′ cosφn)] (11)

Oyn,n′ =
1

2
[− cos θn sin θn′ cosφn + sin θn cos θn′ cosφn′

+i(− sin θn sinφn′ + sin θn′ sinφn)] (12)

P yn,n′ = sin θn cos θn′ cosφn − cos θn sin θn′ cosφn′ (13)

Qyn,n′ =
1

2
[− cos θn sin θn′ cosφn + sin θn cos θn′ cosφn′

+i(− sin θn sinφn′ − sin θn′ sinφn)] (14)

Ozn,n′ =
1

2
[(1 + cos θn cos θn′) sin(φn − φn′)

−i(cos θn + cos θn′) cos(φn − φn′)] (15)

P zn,n′ = sin θn sin θn′ sin(φn − φn′) (16)

Qzn,n′ =
1

2
[(−1 + cos θn cos θn′) sin(φn − φn′)

−i(cos θn − cos θn′) cos(φn − φn′)] (17)

If the ground state of this magnetic system is collinear,
which means that θn = θn′ (when magnetic ions at n
and n′ sites are ferromagnetic) or θn = θn′ + π (when
magnetic ions at n and n′ sites are antiferromagnetic)
and φn = φn′ , the parameters An,n′ , Bn,n′ , Cn,n′ can be
simplified as

An,n′ =
ζn,n′ + 1

2
(18)

Bn,n′ = ζn,n′ (19)

Cn,n′ =
ζn,n′ − 1

2
(20)

where ζn,n′ equals to 1 when the spins for the n and
n′ sites are parallel, otherwise ζn,n′ equals to −1. More
specially, when the ground state of this magnetic sys-
tem is assumed to be collinear ferromagnetic [PS: do not
need to be along z-direction], which means that θn = θn′

and φn = φn′ , the parameters An,n′ , Bn,n′ , Cn,n′ can be
simplified as

An,n′ = 1 (21)

Bn,n′ = 1 (22)

Cn,n′ = 0 (23)

C. The eigenvalue problem of magnon eigenvalues

As shown in the maintext, following the LSWT,
a general pairwise spin Hamiltonian could be writ-
ten as Eq. (3) in the maintext. However, it
should be noted that the operators in ψ†(k) =

[a†1(k), ..., a†N (k), a1(−k), ..., aN (−k)] in the Eq. (3) of
the maintext satisfy the commutation relation

[ψ(k), ψ†(k)] =

[
I
−I

]
= I− (24)

where I represents N×N identity matrix, and N rep-
resents the number of magnetic ions in an unit cell.
To diagonalize the boson pairing Hamiltonian, we can
solve the eigenvalue problem of the general Hamiltonian
HJ(k) = I−H(k) (i.e., Eq. (6) of the maintext). The
first N diagonal elements are the energies of the normal
spin wave modes ωk, n and the last N eigenvalues are
equal to the first N eigenvalues multiplied by minus one.
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D. Instructions on the program of general relations
between magnon eigenvalues

As shown in the maintext, a general pairwise spin
model could be expanded as the isotropic Heisenberg
Hamiltonian, the DM interactions, and the anisotrop-
ic symmetric terms, as shown in Eq. (2) in the main-
text. We ignore the third term and perform LSWT to
obtain the quadratic spin Hamiltonian as shown in E-
q. (3) in the maintext. Note that there is a simple re-
lation between the Fourier transform of MEIs and the
SSME, consequently one can easily calculate SSME at
arbitrary k point in BZ. Thus, different with the con-
ventional group symmetry analysis, which give the rela-
tionship between the magnon energies at the symmetry-
related k points, our method produces the relationships
between the SSME at high symmetry k points subjected
to Rcut. We propose a method to obtain the relations be-
tween SSME of different high-symmetry k-points. For the
given magnetic system in the maintext, the algorithm of
the proposed method is implemented in the Mathematica
notebook ”SR.nb”. Using this code, one should first en-
ter the information of magnetic materials, including: (1)
the primitive basis and conventional basis; (2) the posi-
tions of magnetic atoms; (3) the (magnetic) space group;
(4) the spin directions of magnetic atoms; (5) the range
of MEIs to be considered (including Heisenberg and DM
interactions); (6) whether to consider SIA; (7) the inter-
ested k-points. Then the relations between SSME can be
automatically obtained. To catch your eye, we have used
red color to indicate that the following variable should
be specified in the notebook ”SR.nb”.

The typical magnetic system has the magnetic struc-
ture with the magnetic space group (BNS 85.59). As
shown in Table I in the maintext, the lattice constant c/a
is 0.8. The magnetic ions are located at three nonequiv-
alent crystallographic sites: 4d (0, 0, 0), 2a (0.25, 0.75,
0) and 2c (0.25, 0.25, z) WP and the positions for these
eight magnetic ions are summarized in Table I in the
maintext. While the 4d and 2a WP had been completely
determined by the symmetry, the coordinates of 2c WP
have a variable z and here we adopt it as z = 0.1. The
magnetic state is a collinear ferromagnetic order with
spin along the z direction. This case belongs to the type-
I magnetic space group (BNS 85.59), and all of the the
polar angle and azimuthal angles are equal to 0.

In this notebook ”SR.nb”, one should specify the pa-
rameters as input information, such as:

(*input parameters:*)
(*primitive lattice basis*)
A = {{1, 0, 0}, {0, 1, 0}, {0, 0, 0.8}};
(*conventional lattice basis*)
AA = {{1, 0, 0}, {0, 1, 0}, {0, 0, 0.8}};
(*input positions of magnetic atoms based on conven-

tional lattice basis vectors*)
atoms=8;
τ = {{0, 0, 0},

{0.5, 0, 0},
{0, 0.5, 0},
{0.5, 0.5, 0},
{0.75, 0.25, 0.},
{0.25, 0.75, 0.},
{0.25, 0.25, 0.1},
{0.75, 0.75, -0.1}};
(*input the serial number of space group or the mag-

netic space group (in BNS notation).*)
msg=85.59;
(*spin directions of magnetic atoms in spherical coor-

dinates (θn, φn) with the polar angles θn and azimuthal
angles φn.*)

ang = {{0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0,
0}, {0,0}};

(*the range of Heisenberg and DM interactions to be
considered, respectively*)

Jmax = 3;
Dmax = 2;
(*set DIA = ”True” or ”False” to indicate whether to

consider single ion anisotropy.*)
DIA = False;
(*high-symmetry points*)
kk[1] = {0, 0, 0};
kk[2] = {0.5, 0, 0};
kk[3] = {0.5, 0.5, 0};
kk[4] = {0, 0, 0.5};
kk[5] = {0.5, 0, 0.5};
kk[6] = {0.5, 0.5, 0.5};
kname = {”Γ”, ”X”, ”M”, ”Z”, ”R”, ”A”};

In the following, we would like to give a description of
these parameters one by one:

(1) the primitive basis and conventional basis of Bra-
vais lattice

One should input them in Cartesian coordinates. As
the example in the maintext, the space group P4/n (No.
85) crystallizes in a tetragonal lattice, and its primitive
basis A and conventional basis AA of Bravais lattice are
both {{1, 0, 0}, {0, 1, 0}, {0, 0, 0.8}}.

(*primitive lattice basis*)
A = {{1, 0, 0}, {0, 1, 0}, {0, 0, 0.8}};
(*conventional lattice basis*)
AA = {{1, 0, 0}, {0, 1, 0}, {0, 0, 0.8}};

(2) the number and the Wyckoff positions of magnetic
atoms (based on conventional lattice basis vectors)

(*input positions of magnetic atoms based on conven-
tional lattice basis vectors*)

atoms=8;
τ = {{0, 0, 0},
{0.5, 0, 0},
{0, 0.5, 0},
{0.5, 0.5, 0},
{0.75, 0.25, 0.},
{0.25, 0.75, 0.},
{0.25, 0.25, 0.1},
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{0.75, 0.75, -0.1}};

(3) the (magnetic) space group of the magnetic sys-
tem. When the magnetic moments are quite localized,
magnetic interactions may still satisfy the symmetries of
its space group. In this case, one can enter the serial
number of its space group. Otherwise, one should enter
the serial number of its magnetic space group (in BN-
S notation). As the example for collinear ferromagnetic
state in the maintext, the magnetic space group (BNS
85.59) has the same symmetries as the space group (SG.
85). In this case, the results of the input ”msg=85” and
”msg=85.59” are equivalent. Note that if the input pa-
rameter is an integer ”X”, we would use the symmetry
of this space group (No. X), otherwise, we will use the
symmetry of the magnetic space group as ”BNS X.Y”.

(*input the serial number of space group or the mag-
netic space group (in BNS notation).*)

msg=85.59;

(4) the spin directions of magnetic atoms. One should
input them in spherical coordinates (θn, φn) with the po-
lar angles θn and azimuthal angles φn. As the example
in the maintext, the FM (001) state should be

(*spin directions of magnetic atoms in spherical coor-
dinates (θn, φn) with the polar angles θn and azimuthal
angles φn.*)

ang = {{0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0,
0}, {0,0}};

(5) One should set up the range of magnetic interac-
tions to be considered. You can set the range of Heisen-
berg and DM interactions respectively.

(*the range of Heisenberg and DM interactions to be
considered, respectively*)

Jmax = 3;
Dmax = 2;
For example, we set Jmax = 3 and Dmax = 2, which

means that we consider the range of Heisenberg interac-
tions up to J3, while the DM interactions are considered
up to D2.

(6) Then one should set up whether to consider SIA
by setting DIA = ”True” or ”False”.

(*set DIA = ”True” or ”False” to indicate whether to
consider single ion anisotropy.*)

DIA = False;

(7) Last, one should input the information of high-
symmetry points to be considered, including the position-
s of these high-symmetry points and the labeled names
of these high-symmetry points.

(*high-symmetry points*)
kk[1] = {0, 0, 0};
kk[2] = {0.5, 0, 0};
kk[3] = {0.5, 0.5, 0};
kk[4] = {0, 0, 0.5};
kk[5] = {0.5, 0, 0.5};

kk[6] = {0.5, 0.5, 0.5};
kname = {”Γ”, ”X”, ”M”, ”Z”, ”R”, ”A”};

After entering the above parameters, our program
would output the following information, including:

TABLE III. The Heisenberg and DM interactions for the NNs
of the typical material in the maintext for collinear FM state
(BNS 85.59) restricted by the crystal symmetry.

distance(a) n n′ Rl J D
0.35 1 5 (−1, 0, 0) J1 (Dx

1 , D
y
1 , D

z
1)

1 6 (0,−1, 0) (Dx
1 , D

y
1 , D

z
1)

2 5 (0, 0, 0) (−Dy
1 , D

x
1 , D

z
1)

2 6 (0,−1, 0) (−Dy
1 , D

x
1 , D

z
1)

3 5 (−1, 0, 0) (Dy
1 ,−Dx

1 , D
z
1)

3 6 (0, 0, 0) (Dy
1 ,−Dx

1 , D
z
1)

4 5 (0, 0, 0) (−Dx
1 ,−Dy

1 , D
z
1)

4 6 (0, 0, 0) (−Dx
1 ,−Dy

1 , D
z
1)

0.36 1 7 (0, 0, 0) J2 (Dx
2 , D

y
2 , D

z
2)

1 8 (−1,−1, 0) (Dx
2 , D

y
2 , D

z
2)

2 7 (0, 0, 0) (−Dy
2 , D

x
2 , D

z
2)

2 8 (0,−1, 0) (−Dy
2 , D

x
2 , D

z
2)

3 7 (0, 0, 0) (Dy
2 ,−Dx

2 , D
z
2)

3 8 (−1, 0, 0) (Dy
2 ,−Dx

2 , D
z
2)

4 7 (0, 0, 0) (−Dx
2 ,−Dy

2 , D
z
2)

4 8 (0, 0, 0) (−Dx
2 ,−Dy

2 , D
z
2)

0.5 1 2 (0, 0, 0) J3 (Dx
3 , D

y
3 , D

z
3)

1 2 (−1, 0, 0) (Dx
3 , D

y
3 , D

z
3)

1 3 (0, 0, 0) (−Dy
3 , D

x
3 ,−Dz

3)
1 3 (0,−1, 0) (−Dy

3 , D
x
3 ,−Dz

3)
2 4 (0, 0, 0) (−Dy

3 , D
x
3 , D

z
3)

2 4 (0,−1, 0) (−Dy
3 , D

x
3 , D

z
3)

3 4 (0, 0, 0) (Dx
3 , D

y
3 ,−Dz

3)
3 4 (−1, 0, 0) (Dx

3 , D
y
3 ,−Dz

3)

(1) the symmetry of the (magnetic) space group.
output[symmetry]=
(x,y,z | mx,my,mz)
(-y+1/2,x,z | -my,mx,mz)
(y,-x+1/2,z | my,-mx,mz)
(-x+1/2,-y+1/2,z | -mx,-my,mz)
(-x,-y,-z | mx,my,mz)
(y+1/2,-x,-z | -my,mx,mz)
(-y,x+1/2,-z | my,-mx,mz)
(x+1/2,y+1/2,-z | -mx,-my,mz)
where the left part represents the symmetry opera-

tion for positions of magnetic atoms, while the right
part means the symmetry operation for the orientation
of magnetic moment.

(2) The program would also give the distance and the
corresponding symmetry restricted MEIs, including the
Heisenberg and DM interactions. For example, there are
in total 24 MEIs in this magnetic system up to J3, as
summarized in the Table III. Meanwhile, the correspond-
ing symmetry restricted DM interactions D(τn, τn′ ,Rl)
are also listed here. Note that for 5th NN MEIs, the sym-
metry makes Dz

5 = 0, while for 7th NN MEIs, we have
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D7 = (0, 0, 0). These symmetry restrictions would also
be automatically considered in our program.

(3) the main output: the relations between SSME at
different high-symmetry k points.

output[relations]=
M −A = 0
X −R = 0
Γ− Z = 0
Γ− 2X +M = 0
where the label ”M” means the quadratic sum of the

magnon energies at M point ”
∑
i ω

2
i (M)”, as well as the

labels of other high-symmetry k points. We can see that,
up to J3, the quadratic sum of the magnon energies sat-
isfy that

∑
i ω

2
i (Γ) =

∑
i ω

2
i (Z),

∑
i ω

2
i (X) =

∑
i ω

2
i (R),∑

i ω
2
i (M) =

∑
i ω

2
i (A) and 2

∑
i ω

2
i (X) =

∑
i ω

2
i (Γ) +∑

i ω
2
i (M), as shown in Table II in the maintext.

As shown above, by entering the information of the
typical magnetic model, one can use this code to obtain
the relations between magnon eigenvalues in this paper
easily. Meanwhile, one can easily extend our method to
other magnetic systems by simply modifying this exam-
ple code.
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