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Here we provide details of derivations for some important equations in the main text.

I. THE WIGNER FUNCTION

In absence of particle scatterings, the Wigner function
satisfies the following kinetic equation

o (050 ) - m| W =0 @)

Multiplying this equation with v-p+ (i/2)v -9+ m from
the left, we obtain

K;ﬁ — 382 —m2> —|—ip-3} Wi(z,p)=0. (2

The mass-shell condition and Vlasov equation for the
Wigner function are obtained by linear recombinations
of Eq. (2) and its Hermitian conjugate,

(p2 - 382 - m2) W(z,p) =0,
p-OW(z,p) =0, 3)

where we have used the property W1 = ~%W~%. From
the mass-shell condition we find that the momentum p*
for the Wigner function is no longer on the traditional
mass-shell p? = m? at second order in space-time gradi-
ent.

To solve the Wigner function, we make a gradient ex-
pansion as

W(z,p) = Z Wi('r?p) + O(Kn3>7 (4)
i=0,1,2

where the subscript ¢ = 0,1,2 labels orders in space-
time gradient. We note that the gradient expansion for
the Wigner function is equivalent to an expansion with
respect to the Knudsen number Kn, thus here and in
the follows we use Kn to label orders in the gradient
expansion. The zeroth order part satisfies the following
equations

(vy-p—m)Wo(z,p) =0,
(p® — m*)Wo(z,p) =0,
p-OWo(x,p) =0, (5)

which are obtained from leading-order terms of Egs. (1)
and (3). A general solution of W, can be constructed

by directly inserting the quantized field operators ()
and ¢(z) into the definition of the Wigner function, c.f.,
Wo(z,p) in Eq. (4) in the main text. We then assume
that higher order terms of the Wigner function are re-
lated to Wy and take the trial solution as

W(z,p) = UWo(z,p)y°UTH" + O(Kn®),  (6)

where the matrix operator U is assumed to be function
of derivative operator

U=1+Uyy-0+Ud*+ O(Kn?) (7)

In order to fulfill Egs. (1), W; should satisfy

1
(v-p—m)Wi(z,p) + 57 OWo(z,p) = 0. (8)
According to the assumption (6), W7 is given by

F
Wi(x,p) = Ury - 0Wo(x,p) + Wo(z,p)y- 97°U{H". (9)

Inserting W7 into Eq. (8), we obtain

7
0= (y-p—m)Uyy-0Wy(x,p) + 37 oWy (x,p)
%
+[(y-p—m)Wo(z,p)] - 97°U{A°. (10)

We then use the following relation to commute v-p —m
with Ui~y - 0 so that the result can be simplified with the
first line in Eq. (5),

(v p—m)Uy-0
={v-p,Uy-0} =Uy-0(y-p—m)—2mUy-0.(11)

Finally we obtain an equation for Uy,

i

UWaWO(ﬂUap) = VaWO(xvp)

4m
1
+% {v-p, Uiy -0} Wo(z,p),(12)

which can be solved by iterative method and the result
reads
Uy = - (13)
YT am



Inserting U; into Eq. (6) and taking out the second-order
parts, we obtain

1
Wa = o=z Wy 9 1 02 [UsWo + *Wor UL~ 0} ,
(14)
which should fulfills Eq. (1),
)
(v p —=m)Wa(z,p) + 57~ OWi(z,p) =0.  (15)
The calculation of the left-hand-side of Eq. (15) is
straightforward
)
(v p—m)Wa(z,p) + 57 - Wi (z,p)
1 —
= 1g2 (Y p—m)y- Wy - 9
+(y-p = m)9* |UsWo + W "UJ°
1 1 —
—— W+ —v - OWpy- 0 . 16
3 o+ s 0 (16)
We further use the following relation
(y-p=m)y-0
={y-p,y- 0} —7-9(y-p—m)—2my-9
=2p-0—v-0(y-p—m)—2my-0, (17)

together with the first line in Eq. (5) and obtain

1
(y-p—m)d? |:U2WO + Wo'yOU;WO = 8—m82WO . (18)

The matrix U; must have a singularity at p?> = m?
otherwise the left-hand-side of Eq. (18) vanish because
(v-p—m)Wy = 0 for an on-shell momentum p#. A
simplest solution of Eq. (18) reads
. + m
UsWo + Wor*UfA* = L 2Ty, 19
2 0 + O’Y 2 8m(p2 _ m2) 0> ( )
with
Ypt+tm
= . 20
2 16m(p? — m?2) (20)

Note that 70U2T'yo = U, and find {Uz, Wy} = 0, where
the later one can be proved using the explicit expression
of Wy. Inserting Uy in Eq. (13) and Us in Eq. (20) into
Egs. (6) and (7), one obtains first order and second order
parts of the Wigner function, c.f., Eq. (6) in the main
text.

II. HYDRODYNAMICAL QUANTITIES IN
LOCAL EQUILIBRIUM

This section we will show details for deriving the cur-
rent density J*, the energy-momentum tensor (density)
T+ the spin tensor (density) S™*¥, and the dipole-
moment tensor (density) DH¥.

A. Wigner function

In order to calculate the physical quantities, we first
look at the Wigner function W = Wy + 6W, where Wy
is the zeroth order part and §W contains the first and
second order parts of the Wigner function. The explicit
expressions of Wy and 6W are given in Egs. (4) and (6) in
the main text. One can easily derive the zeroth order part
W using explicit expressions of wave functions u,(p) and

v (=P),

1
Wo = (m+7-p)(V+ Yyt n)s(p® —m?),  (21)

where we have defined

2
(2m)3 ; Ors
(0655 + 0
n*(z,p) Z {60°

*9(*17 )vs(*p)v v (—p) frs(z, —p) } (22)

With the help of Wy, the calculation of §W is then
straightforward with Eq. (6) in the main text. Using
Eq. (9) in the main text, we obtain the following results
in local thermal equilibrium

4 1,
b= o (1 357)
x [0(p°) exp(—B-p+ &) + 6(

nt = _ 1 ehvab
*d T T (27)3m

x [0(p°) exp(—B-p+ &)

V(m,p) =

O)f;s(xﬂ _p)} )
+

P)7V"7 ur (p) £ (%, p)

—p")exp(B-p—9)] ,

PvWap

—0(—p°)exp(B-p—9)] ,

(23)
where we have taken the Boltzmann limit and truncated
the expansion series at O(x?).

B. Current density and energy-momentum tensor

The current density J* and the energy-momentum ten-
sor (density) TH¥ are given by the vector component of
the Wigner function as shown as Eq. (11) and (12) in
the main text. Here V* is extracted from W by

VH = Tr [v*(Wo + dW)] . (24)

The vector components of Wy and §W are respectively
given by
Tr (v* W

) = 8(p* —m*)p"V(x,p),
Tr (4#*0W) =

1
(p - mg)%dwaﬁpaaunﬁ (:v,p)

5(p* — 1
_ [ = m) - Vb5 —m?) POV (,p)

+(’)(Kn3) , (25)



where §'(x) = dé(x)/de = —6(z)/x is the first order
derivative of the delta function. This result agree with
Refs. [1, 2] at zeroth and first order in space-time gradi-
ent. At second order, we obtain two terms proportional
to 92V (x,p), the momentum p* in one term is fixed on
the mass-shell by §(p? —m?) while p* in the other term
is not. In general we can redefine V (z,p) and the delta-
function as

5(p? —m? —om?) [1 + 6V V(x,p)
= 6(p” —m*)V(z,p)

5(p* —m?)

1
2 + 5/(]?2 - m2) 182‘/(1.7}7) ’ (26)

4m

where
2., L
-~ 4V(z,p)
1
16m2V (z,p)

dm 2*V (z,p) + O(Kn?),

§V ~ OV (z,p) + O(Kn®).

In this way we can clearly see interpretations of the sec-
ond order terms: the on-mass-shell part plays as a modi-
fication to the distribution function from long-range cor-
relations, while the off-mass-shell part modifies the mass-
shell of particles. We note that in this work, interactions
between different particles are neglected, but long-range
correlations still exist because particles are treated as
wave-packets with finite space-time volume. The vec-
tor component of the Wigner function in local thermal
equilibrium is obtained by substituting Veq and nf, in
Eq. (23) into Eq. (25),

4 1
po_ 2 2 loo
Viq (271_)35 (p m 48 )

1 1
1— 2 14 —*8 o I
x( 16m28)( +16w wﬁ)p

x [0(p°) exp(—B-p+ &) +0(—p°) exp(B- p — &)

- 2 _ 5 2) praB p, o\
+2(2ﬂ_)3m25(p m )6 paaIJGﬁpU}\p w
x [0(p°) exp(—=B-p+&) —0(—p°) exp(B - p — €)]
—|—(’)(Kn37 KnQXS7 Knx?, X?), (27)

where the derivative operator acts on locally-defined pa-
rameters ¥, £, and w"”. Integrating VL, over momen-
tum, we obtain the current density J4,, which is given in
Eq. (14) in the main text. The energy-momentum tensor
in local equilibrium is derived by substituting VY, in Eq.
(27) into Eq. (12) in the main text. In the calculations,
we have taken replacements p* — —p* for anti-particle

parts and used the following rank-/ moments
8
d4 ) 2 .2 2] 0
o [ 400 —m2)0")
xptpte e pfexp(=f-p). (28)

Here * = put = w*/T is the thermal velocity. Such
a moment expansion for distribution function is widely

JHAH2

used for deriving hydrodynamics from kinetic theory [3,
4]. The rank-0, 1,2 moments are given by

I=KoB),
I =ul Ky (B),

IHV = U'U"U,VKQ(ﬁ) + %ij(m2K0 - K2)7 (29)

and the rank-3 moment 7*"* is given in Eq. (17) in the
main text. The projection operator is defined as A*” =
gt — utu”. Here we have defined K, as shown in Eq.
(15) in the main text.

The recursive relation for K, can be proved as follows:
we first convert the definition of K,, to another equivalent
form

Kn == (217?7;;)3/dpr(p2+m2)(”*1)/2€*ﬂ\/m. (30)

Then we try to calculate
K, —m?K,_s
160 [ _ 8/
T (2n)? / dp(p® +m?) "8 2ptem PV
0

167 /OO 2 2\(n-2)/2,3 & p\/prrm?
=— dp(p® +m~)\" p°—e prrm
Ben? Jy ) dp
167T > 2 2 d
= dpe— BV P?+m? 2 2\(n—2)/2,3
5(277)3/0 pe dp (™ +m’) p} ’

(31)

where in the last step we have used the method of inte-
grating by parts. Completing the derivative with respect
to p, we obtain

167 > 2 2
FQ _ 2K = d —B\/p2+m
P A2 ﬂ(27r)3/0 pe
% [3p2(p2 4 m2)(n—2)/2 +(n—2)p (p? + m?)(n—4)/2 .

(32)

We further use p? = (p? + m?) —m? for the second term
and obtain

K, — man,Q - ng/ dpe—ﬂ\/p2+m2
0

p(2r)
X {(n +1)p*(p* + m2)(”’2)/2

—m2(n— 2)p*(p? + m2)(n—4)/2:|
n+1

B 7(n—2)
=g et

Note that for massless particles, the relations are simpli-
fied to K, = [n+1)/8]K,—1.

With the help of fluid velocity vector u* and the re-
lated projection operator A*Y = gl — yHuY, one can
decompose J&, as

ng = (u : JEQ)U’N + A/lf‘]el/q

= Nequ? + 951 (34)

m?K,_3. (33)




In analogue to the viscous hydrodynamics, we identify
Neq = U - Joq as the particle number density in the co-
moving frame of vector u#. The remaining part §j* is the
diffusion current. In this work, §j* consists of two parts:
one is the contribution of magnetization current, which is
of order O(Kn x;), while the other part contains second
order space-time derivative and therefore is O(Kn?).

On the other hand, the energy-momentum tensor in
general can be decomposed into a symmetric part 74"
and an anti-symmetric part 67%",

T =Ts" + 014" (35)

From Eq. (14) in the main text, one can easily find that
the anti-symmetric part will vanish for the spinless case
with w#*” = 0. Therefore in our power counting scheme,
6T%" is of order O(Kn ;). The symmetric part can be
further decomposed as

THY = eoquit? — Pog AP + 5TEY (36)

in analogue to that in the viscous hydrodynamics. Sim-
ilar to dj#, we also find that 675" consists of two con-
tributions. One of them depend on the spin potential
w* and will vanish when w*” = 0. We identify this
part as the heat flow and viscous tensor correction in-
duced by the spin polarization. The other contribution
arise from long-range correlations, which contains second
order derivatives.

C. Spin tensor

The spin tensor is given by the axial-vector component
of the Wigner function as shown in Eq. (13) in the main
text. Using Eq. (21) and Eq. (6) in the main text, we
obtain

A* =Tr [7“75(W0 + (5W)]
= 0(p* —m*)mn*(z,p) + O(Kn’x,),  (37)

where Tr (y#9°6W) is a term of O(Kn?x;) and thus does
not contribute to A*. Using the equilibrium nf, in Eq.
(23), one can derive the spin tensor S’g‘d“” and the result
is given in Eq. (21) in the main text.

The spin potential w” is antisymmetric in its indices
1 > v. In general, we can decompose it as

W = (Wrug )u” — (W ug )ut 4 e Pugis . (38)

Such a decomposition is in analogue to decomposing the
electromagnetic field tensor in terms of the electric field
and the magnetic field. Here we have defined

Dt = kol

UyWap - (39)

N | =

We now focus on the following term, which appears in

Sé‘d“”,
w4+ 2l
= (WHuq)u” — u? (W ugq)ut + u’\e“””"@uad)g
Ut (WY g )ut — u (WU )u” + ut e Py is
—u” (W ug )u 4 Y (WU )ut — u” e NPy is
= (U,)‘e“mﬁ + uter P — u”e“)‘aﬂ) UaWg . (40)
We then use the Schouten identity [5],
utetreB g tevaBA
BNy B Ly Bdie g (4])
and obtain
W + VN = — (uﬂe)““’o‘ + uo‘eﬁ)““’) UalB
= Mg, (42)
where we have used uu, = 1 and v*@, = 0 in the last

step. Substitute the above equation into Eq. (21) in the
main text, one can obtain Eq. (22) in the main text.

D. Dipole moment tensor

The dipole moment tensor is given by the tensor com-
ponent of the Wigner function. The tensor component of
Wy is easy to write according to Eq. (21),

Tr(a"'Wy) = —6(p? — m?)e"*Ppong . (43)

On the other hand, the tensor component of 6W is ob-
tained by substitute Eq. (21) into Eq. (6) in the main
text and then projecting onto ¥,

Tr(c" W) = —%5(1}2 —m?)(ptd” — p o)V
+0O(Kn’x,), (44)

where we also truncate higher order terms. The physical
interpretations of Eqgs. (43) and (44) can be found in
the rest frame with respect to a given p*. We identify
Tr(c"*Wy) as the contribution form particle’s intrinsic
magnetic dipole moment, which is related to particle’s
spin polarization. Meanwhile, Tr(c**§W) is the electric
dipole moment contributed by inhomogeneity of particle
distribution. The dipole moment tensor in local equilib-
rium is then given by

Dt () = / d*pTr [o" (Wo + W)

1
= —w"(Ky — 71K )sinh
2m

1
+7wa[uul’]ua(K2—|—5_1K1)Sinh§

m

1

~ 9l (V] i 2
+m8 (u K, smhf) + O(Kn“xs), (45)

where we have used the equilibrium expressions of Veq
and nf, in Eq. (23).



IIT. EOMS FOR THERMODYNAMICAL
PARAMETERS

In this section, we will show how to derive the EOMs
for thermodynamical parameters § = 1/T, &, u*, and
wH¥, from conservation laws. Substituting the equilib-
rium current density J% (v) and energy-momentum ten-
sor TV () into the corresponding conservations laws, we
derive

Ou(u"Kysinhé) =0,
1
Oy { [u“u”Kg + gA‘“’(mQKO - Kg)] coshf} =0.

(46)
We note that contributions of w*” vanish in these equa-
tions. The EOM for w*¥ will be derived from the angular

momentum conservation in later discussions. Since K,
are pure functions of 3, one can find that

0Ky = — (0u8) K1 - (47)

Then conservation laws in (46) give

(01{1 _ BKQ) sinh € + €K, coshe =0,
— [g (m2K0 — 4K2) + BKg] cosh & 4+ EKysinh€ =0,

(48)

and

w” (m2K0 — 4K2) cosh & — %(V”ﬁ) (m2K1 — Kg) cosh ¢

+%(V”§) (m*Ko — K») sinh ¢ = 0. (49)

Here the first equation in (48) is the charge conservation
and the second equation in (48) is obtained from the
energy-momentum conservation by projecting onto u*,
while Eq. (49) is obtained from the energy-momentum
conservation by projecting onto the direction perpendic-
ular to u”. Here dot represents the covariant time deriva-
tive d/dt = u,0" and V* = A" 0, is the space deriva-
tive in comoving frame. By solving Eq. (48), we obtain

B and &, while @* is obtained from Eq. (49),

. —Kysinh® ¢ — § (m?Ky — 4K3) cosh” £

3 K0,
b K1 K3 cosh? € — KoKosinh? ¢ !
. =L (mPKy —4K,) Ky — K1 K
€= 3(m 02 2) 2 - 12 3QSinhfcoshf,
K1 K3cosh” & — Ko Kosinh™ &
mzKong
'#:,—t h I
“ 3(mPK, — akcy) PBeVTE
’Ky — K
T 178 gug, (50)

+3(m2K0 - 4K2)

They can be further simplified using the recursive rela-
tion of K,, in Eq. (33). We choose to express Ky and K3
in terms of K; and K> as

1 3
= — _ —
Ko 2 <K2 5K1) )

Ks = % (K2 + ;K1> +m?K; . (51)

Using these relations to substitute Ky in ﬁ , f , and u*, as
well as K3 in @#, we obtain results shown in Eq. (28) in
the main text.

On the other hand, the EOM of w*” is derived by in-
serting T[y” and Sg‘(’l“” into the angular momentum con-
servation law, i.e., Eq. (29) in the main text. After a few
steps of calculation, we obtain

d
m? K" cosh € = —m2wh” <9 + d) (Kj cosh )
T

—Opx [cosh§ (I“”\pw”p — I”’\”w“p)} . (52)

Since w*” can be decomposed as shown in Eq. (38), we
can also decompose w*” in a similar way using the fluid
velocity vector u*,

W = ARAGOP — ulO Uy + u O U (53)

We can solve w*”u,, (or AgAgwaﬁ) by contracting Eq.
(52) with w, (or with projection operators). The results
are given in Egs. (31) and (32) in the main text. In the
calculations, we also used the recursive relation of K,
in Eq. (33) to simplify the coefficients. We express all
coeflicients in terms of K; and K5 because they are re-
spectively related to the particle number density and the
energy density as K; = neq/sinh € + O(Kn?, Kn x,, x?)
and Ky =~ €oq/ cosh & + O(Kn?, Kn xs, x2).
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