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Here we provide details of derivations for some important equations in the main text.

I. THE WIGNER FUNCTION

In absence of particle scatterings, the Wigner function
satisfies the following kinetic equation[

γµ

(
pµ +

i

2
∂µ
)
−m

]
W (x, p) = 0 . (1)

Multiplying this equation with γ · p+ (i/2)γ · ∂+m from
the left, we obtain[(

p2 − 1

4
∂2 −m2

)
+ ip · ∂

]
W (x, p) = 0 . (2)

The mass-shell condition and Vlasov equation for the
Wigner function are obtained by linear recombinations
of Eq. (2) and its Hermitian conjugate,(

p2 − 1

4
∂2 −m2

)
W (x, p) = 0 ,

p · ∂W (x, p) = 0 , (3)

where we have used the property W † = γ0Wγ0. From
the mass-shell condition we find that the momentum pµ

for the Wigner function is no longer on the traditional
mass-shell p2 = m2 at second order in space-time gradi-
ent.

To solve the Wigner function, we make a gradient ex-
pansion as

W (x, p) =
∑

i=0,1,2

Wi(x, p) +O(Kn3) , (4)

where the subscript i = 0, 1, 2 labels orders in space-
time gradient. We note that the gradient expansion for
the Wigner function is equivalent to an expansion with
respect to the Knudsen number Kn, thus here and in
the follows we use Kn to label orders in the gradient
expansion. The zeroth order part satisfies the following
equations

(γ · p−m)W0(x, p) = 0 ,

(p2 −m2)W0(x, p) = 0 ,

p · ∂W0(x, p) = 0 , (5)

which are obtained from leading-order terms of Eqs. (1)
and (3). A general solution of W0 can be constructed

by directly inserting the quantized field operators ψ(x)
and ψ̄(x) into the definition of the Wigner function, c.f.,
W0(x, p) in Eq. (4) in the main text. We then assume
that higher order terms of the Wigner function are re-
lated to W0 and take the trial solution as

W (x, p) = UW0(x, p)γ0U†γ0 +O(Kn3) , (6)

where the matrix operator U is assumed to be function
of derivative operator

U ≡ 1 + U1γ · ∂ + U2∂
2 +O(Kn3) (7)

In order to fulfill Eqs. (1), W1 should satisfy

(γ · p−m)W1(x, p) +
i

2
γ · ∂W0(x, p) = 0 . (8)

According to the assumption (6), W1 is given by

W1(x, p) = U1γ · ∂W0(x, p) +W0(x, p)γ ·
←−
∂ γ0U†1γ

0 . (9)

Inserting W1 into Eq. (8), we obtain

0 = (γ · p−m)U1γ · ∂W0(x, p) +
i

2
γ · ∂W0(x, p)

+ [(γ · p−m)W0(x, p)] γ ·
←−
∂ γ0U†1γ

0 . (10)

We then use the following relation to commute γ · p−m
with U1γ · ∂ so that the result can be simplified with the
first line in Eq. (5),

(γ · p−m)Uγ · ∂
= {γ · p, Uγ · ∂} − Uγ · ∂(γ · p−m)− 2mUγ · ∂ .(11)

Finally we obtain an equation for U1,

U1γ · ∂W0(x, p) =
i

4m
γ · ∂W0(x, p)

+
1

2m
{γ · p, U1γ · ∂}W0(x, p) ,(12)

which can be solved by iterative method and the result
reads

U1 =
i

4m
. (13)
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Inserting U1 into Eq. (6) and taking out the second-order
parts, we obtain

W2 =
1

16m2
γ · ∂W0γ ·

←−
∂ + ∂2

[
U2W0 + ∂2W0γ

0U†2γ
0
]
,

(14)
which should fulfills Eq. (1),

(γ · p−m)W2(x, p) +
i

2
γ · ∂W1(x, p) = 0 . (15)

The calculation of the left-hand-side of Eq. (15) is
straightforward

(γ · p−m)W2(x, p) +
i

2
γ · ∂W1(x, p)

=
1

16m2
(γ · p−m)γ · ∂W0γ ·

←−
∂

+(γ · p−m)∂2
[
U2W0 +W0γ

0U†2γ
0
]

− 1

8m
∂2W0 +

1

8m
γ · ∂W0γ ·

←−
∂ . (16)

We further use the following relation

(γ · p−m)γ · ∂
= {γ · p, γ · ∂} − γ · ∂(γ · p−m)− 2mγ · ∂
= 2p · ∂ − γ · ∂(γ · p−m)− 2mγ · ∂ , (17)

together with the first line in Eq. (5) and obtain

(γ · p−m)∂2
[
U2W0 +W0γ

0U†2γ
0
]

=
1

8m
∂2W0 . (18)

The matrix U2 must have a singularity at p2 = m2,
otherwise the left-hand-side of Eq. (18) vanish because
(γ · p − m)W0 = 0 for an on-shell momentum pµ. A
simplest solution of Eq. (18) reads

U2W0 +W0γ
0U†2γ

0 =
γ · p+m

8m(p2 −m2)
W0 , (19)

with

U2 =
γ · p+m

16m(p2 −m2)
. (20)

Note that γ0U†2γ
0 = U2 and find {U2,W0} = 0, where

the later one can be proved using the explicit expression
of W0. Inserting U1 in Eq. (13) and U2 in Eq. (20) into
Eqs. (6) and (7), one obtains first order and second order
parts of the Wigner function, c.f., Eq. (6) in the main
text.

II. HYDRODYNAMICAL QUANTITIES IN
LOCAL EQUILIBRIUM

This section we will show details for deriving the cur-
rent density Jµ, the energy-momentum tensor (density)
Tµν , the spin tensor (density) Sλ,µν , and the dipole-
moment tensor (density) Dµν .

A. Wigner function

In order to calculate the physical quantities, we first
look at the Wigner function W = W0 + δW , where W0

is the zeroth order part and δW contains the first and
second order parts of the Wigner function. The explicit
expressions ofW0 and δW are given in Eqs. (4) and (6) in
the main text. One can easily derive the zeroth order part
W0 using explicit expressions of wave functions ur(p) and
vr(−p),

W0 =
1

4
(m+ γ · p)(V + γ5γµnµ)δ(p2 −m2) , (21)

where we have defined

V (x, p) =
2

(2π)3

∑
rs

δrs

×
{
θ(p0)f+rs(x,p) + θ(−p0)f−rs(x,−p)

}
,

nµ(x, p) =
1

(2π)3m

∑
rs

{
θ(p0)ūs(p)γµγ5ur(p)f+rs(x,p)

−θ(−p0)v̄s(−p)γµγ5vr(−p)f−rs(x,−p)
}
.(22)

With the help of W0, the calculation of δW is then
straightforward with Eq. (6) in the main text. Using
Eq. (9) in the main text, we obtain the following results
in local thermal equilibrium

Veq =
4

(2π)3

(
1 +

1

16
ωαβωαβ

)
×
[
θ(p0) exp(−β · p+ ξ) + θ(−p0) exp(β · p− ξ)

]
,

nµeq = − 1

(2π)3m
εµναβpνωαβ

×
[
θ(p0) exp(−β · p+ ξ)− θ(−p0) exp(β · p− ξ)

]
,

(23)

where we have taken the Boltzmann limit and truncated
the expansion series at O(χ2

s).

B. Current density and energy-momentum tensor

The current density Jµ and the energy-momentum ten-
sor (density) Tµν are given by the vector component of
the Wigner function as shown as Eq. (11) and (12) in
the main text. Here Vµ is extracted from W by

Vµ = Tr [γµ(W0 + δW )] . (24)

The vector components of W0 and δW are respectively
given by

Tr (γµW0) = δ(p2 −m2)pµV (x, p) ,

Tr (γµδW ) = −δ(p2 −m2)
1

2m
εµναβpα∂νnβ(x, p)

−
[
δ(p2 −m2)

4m2
+ δ′(p2 −m2)

]
1

4
pµ∂2V (x, p)

+O(Kn3) , (25)
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where δ′(x) ≡ dδ(x)/dx = −δ(x)/x is the first order
derivative of the delta function. This result agree with
Refs. [1, 2] at zeroth and first order in space-time gradi-
ent. At second order, we obtain two terms proportional
to ∂2V (x, p), the momentum pµ in one term is fixed on
the mass-shell by δ(p2 −m2) while pµ in the other term
is not. In general we can redefine V (x, p) and the delta-
function as

δ(p2 −m2 − δm2) [1 + δV ]V (x, p)

≡ δ(p2 −m2)V (x, p)

−
[
δ(p2 −m2)

4m2
+ δ′(p2 −m2)

]
1

4
∂2V (x, p) , (26)

where

δm2 ' 1

4V (x, p)
∂2V (x, p) +O(Kn3) ,

δV ' − 1

16m2V (x, p)
∂2V (x, p) +O(Kn3) .

In this way we can clearly see interpretations of the sec-
ond order terms: the on-mass-shell part plays as a modi-
fication to the distribution function from long-range cor-
relations, while the off-mass-shell part modifies the mass-
shell of particles. We note that in this work, interactions
between different particles are neglected, but long-range
correlations still exist because particles are treated as
wave-packets with finite space-time volume. The vec-
tor component of the Wigner function in local thermal
equilibrium is obtained by substituting Veq and nµeq in
Eq. (23) into Eq. (25),

Vµeq =
4

(2π)3
δ

(
p2 −m2 − 1

4
∂2
)

×
(

1− 1

16m2
∂2
)(

1 +
1

16
ωαβωαβ

)
pµ

×
[
θ(p0) exp(−β · p+ ξ) + θ(−p0) exp(β · p− ξ)

]
+

1

2(2π)3m2
δ(p2 −m2)εµναβpα∂νεβρσλp

ρωσλ

×
[
θ(p0) exp(−β · p+ ξ)− θ(−p0) exp(β · p− ξ)

]
+O(Kn3, Kn2χs, Knχ2

s, χ
3
s) , (27)

where the derivative operator acts on locally-defined pa-
rameters βµ, ξ, and ωµν . Integrating Vµeq over momen-
tum, we obtain the current density Jµeq, which is given in
Eq. (14) in the main text. The energy-momentum tensor
in local equilibrium is derived by substituting Vµeq in Eq.
(27) into Eq. (12) in the main text. In the calculations,
we have taken replacements pµ → −pµ for anti-particle
parts and used the following rank-l moments

Iµ1µ2···µl ≡ 8

(2π)3

∫
d4p δ(p2 −m2)θ(p0)

×pµ1pµ2 · · · pµl exp(−β · p) . (28)

Here βµ ≡ βuµ = uµ/T is the thermal velocity. Such
a moment expansion for distribution function is widely

used for deriving hydrodynamics from kinetic theory [3,
4]. The rank-0, 1, 2 moments are given by

I = K0(β) ,

Iµ = uµK1(β) ,

Iµν = uµuνK2(β) +
1

3
∆µν(m2K0 −K2) , (29)

and the rank-3 moment Iµνα is given in Eq. (17) in the
main text. The projection operator is defined as ∆µν ≡
gµν − uµuν . Here we have defined Kn as shown in Eq.
(15) in the main text.

The recursive relation for Kn can be proved as follows:
we first convert the definition ofKn to another equivalent
form

Kn =
16π

(2π~)3

∫
dp p2(p2 +m2)(n−1)/2e−β

√
p2+m2

. (30)

Then we try to calculate

Kn −m2Kn−2

=
16π

(2π)3

∫ ∞
0

dp(p2 +m2)(n−3)/2p4e−β
√
p2+m2

= − 16π

β(2π)3

∫ ∞
0

dp(p2 +m2)(n−2)/2p3
d

dp
e−β
√
p2+m2

=
16π

β(2π)3

∫ ∞
0

dpe−β
√
p2+m2 d

dp

[
(p2 +m2)(n−2)/2p3

]
,

(31)

where in the last step we have used the method of inte-
grating by parts. Completing the derivative with respect
to p, we obtain

Kn −m2Kn−2 =
16π

β(2π)3

∫ ∞
0

dpe−β
√
p2+m2

×
[
3p2(p2 +m2)(n−2)/2 + (n− 2)p4(p2 +m2)(n−4)/2

]
.

(32)

We further use p2 = (p2 +m2)−m2 for the second term
and obtain

Kn −m2Kn−2 =
16π

β(2π)3

∫ ∞
0

dpe−β
√
p2+m2

×
[
(n+ 1)p2(p2 +m2)(n−2)/2

−m2(n− 2)p2(p2 +m2)(n−4)/2
]

=
n+ 1

β
Kn−1 −

(n− 2)

β
m2Kn−3 . (33)

Note that for massless particles, the relations are simpli-
fied to Kn = [n+ 1)/β]Kn−1.

With the help of fluid velocity vector uµ and the re-
lated projection operator ∆µν ≡ gµν − uµuν , one can
decompose Jµeq as

Jµeq = (u · Jeq)uµ + ∆µ
νJ

ν
eq

≡ nequ
µ + δjµ . (34)
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In analogue to the viscous hydrodynamics, we identify
neq ≡ u · Jeq as the particle number density in the co-
moving frame of vector uµ. The remaining part δjµ is the
diffusion current. In this work, δjµ consists of two parts:
one is the contribution of magnetization current, which is
of order O(Knχs), while the other part contains second
order space-time derivative and therefore is O(Kn2).

On the other hand, the energy-momentum tensor in
general can be decomposed into a symmetric part TµνS
and an anti-symmetric part δTµνA ,

Tµνeq = TµνS + δTµνA . (35)

From Eq. (14) in the main text, one can easily find that
the anti-symmetric part will vanish for the spinless case
with ωµν = 0. Therefore in our power counting scheme,
δTµνA is of order O(Knχs). The symmetric part can be
further decomposed as

TµνS = εequ
µuν − Peq∆µν + δTµνS , (36)

in analogue to that in the viscous hydrodynamics. Sim-
ilar to δjµ, we also find that δTµνS consists of two con-
tributions. One of them depend on the spin potential
ωµν and will vanish when ωµν = 0. We identify this
part as the heat flow and viscous tensor correction in-
duced by the spin polarization. The other contribution
arise from long-range correlations, which contains second
order derivatives.

C. Spin tensor

The spin tensor is given by the axial-vector component
of the Wigner function as shown in Eq. (13) in the main
text. Using Eq. (21) and Eq. (6) in the main text, we
obtain

Aµ = Tr
[
γµγ5(W0 + δW )

]
= δ(p2 −m2)mnµ(x, p) +O(Kn2χs) , (37)

where Tr
(
γµγ5δW

)
is a term of O(Kn2χs) and thus does

not contribute to Aµ. Using the equilibrium nµeq in Eq.
(23), one can derive the spin tensor Sλ,µνeq and the result
is given in Eq. (21) in the main text.

The spin potential ωµν is antisymmetric in its indices
µ↔ ν. In general, we can decompose it as

ωµν = (ωµαuα)uν − (ωναuα)uµ + εµναβuαω̃β . (38)

Such a decomposition is in analogue to decomposing the
electromagnetic field tensor in terms of the electric field
and the magnetic field. Here we have defined

ω̃µ ≡ 1

2
εµναβuνωαβ . (39)

We now focus on the following term, which appears in

Sλ,µνeq ,

uλωµν + 2u[µων]λ

= uλ(ωµαuα)uν − uλ(ωναuα)uµ + uλεµναβuαω̃β

+uµ(ωναuα)uλ − uµ(ωλαuα)uν + uµενλαβuαω̃β

−uν(ωµαuα)uλ + uν(ωλαuα)uµ − uνεµλαβuαω̃β
=
(
uλεµναβ + uµενλαβ − uνεµλαβ

)
uαω̃β . (40)

We then use the Schouten identity [5],

uλεµναβ + uµεναβλ

+uνεαβλµ + uαεβλµν + uβελµνα = 0 , (41)

and obtain

uλωµν + 2u[µων]λ = −
(
uβελµνα + uαεβλµν

)
uαω̃β

= ελµνβω̃β , (42)

where we have used uµuµ = 1 and uµω̃µ = 0 in the last
step. Substitute the above equation into Eq. (21) in the
main text, one can obtain Eq. (22) in the main text.

D. Dipole moment tensor

The dipole moment tensor is given by the tensor com-
ponent of the Wigner function. The tensor component of
W0 is easy to write according to Eq. (21),

Tr(σµνW0) = −δ(p2 −m2)εµναβpαnβ . (43)

On the other hand, the tensor component of δW is ob-
tained by substitute Eq. (21) into Eq. (6) in the main
text and then projecting onto σµν ,

Tr(σµνδW ) = − 1

2m
δ(p2 −m2)(pµ∂ν − pν∂µ)V

+O(Kn2χs) , (44)

where we also truncate higher order terms. The physical
interpretations of Eqs. (43) and (44) can be found in
the rest frame with respect to a given pµ. We identify
Tr(σµνW0) as the contribution form particle’s intrinsic
magnetic dipole moment, which is related to particle’s
spin polarization. Meanwhile, Tr(σµνδW ) is the electric
dipole moment contributed by inhomogeneity of particle
distribution. The dipole moment tensor in local equilib-
rium is then given by

Dµν
eq (x) =

∫
d4pTr [σµν(W0 + δW )]

=
1

2m
ωµν(K2 − β−1K1) sinh ξ

+
1

m
ωα[µuν]uα(K2 + β−1K1) sinh ξ

+
1

m
∂[µ
(
uν]K1 sinh ξ

)
+O(Kn2χs) , (45)

where we have used the equilibrium expressions of Veq
and nµeq in Eq. (23).
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III. EOMS FOR THERMODYNAMICAL
PARAMETERS

In this section, we will show how to derive the EOMs
for thermodynamical parameters β = 1/T , ξ, uµ, and
ωµν , from conservation laws. Substituting the equilib-
rium current density Jµeq(x) and energy-momentum ten-
sor Tµνeq (x) into the corresponding conservations laws, we
derive

∂µ(uµK1 sinh ξ) = 0 ,

∂µ

{[
uµuνK2 +

1

3
∆µν(m2K0 −K2)

]
cosh ξ

}
= 0 .

(46)

We note that contributions of ωµν vanish in these equa-
tions. The EOM for ωµν will be derived from the angular
momentum conservation in later discussions. Since Kn

are pure functions of β, one can find that

∂µKn = − (∂µβ)Kn+1 . (47)

Then conservation laws in (46) give(
θK1 − β̇K2

)
sinh ξ + ξ̇K1 cosh ξ = 0 ,

−
[
θ

3

(
m2K0 − 4K2

)
+ β̇K3

]
cosh ξ + ξ̇K2 sinh ξ = 0 ,

(48)

and

u̇ν
(
m2K0 − 4K2

)
cosh ξ − 1

3
(∇νβ)

(
m2K1 −K3

)
cosh ξ

+
1

3
(∇νξ)

(
m2K0 −K2

)
sinh ξ = 0 . (49)

Here the first equation in (48) is the charge conservation
and the second equation in (48) is obtained from the
energy-momentum conservation by projecting onto uµ,
while Eq. (49) is obtained from the energy-momentum
conservation by projecting onto the direction perpendic-
ular to uµ. Here dot represents the covariant time deriva-
tive d/dτ ≡ uµ∂

µ and ∇µ ≡ ∆µν∂ν is the space deriva-
tive in comoving frame. By solving Eq. (48), we obtain

β̇ and ξ̇, while u̇µ is obtained from Eq. (49),

β̇ =
−K2 sinh2 ξ − 1

3

(
m2K0 − 4K2

)
cosh2 ξ

K1K3 cosh2 ξ −K2K2 sinh2 ξ
K1θ ,

ξ̇ =
− 1

3

(
m2K0 − 4K2

)
K2 −K1K3

K1K3 cosh2 ξ −K2K2 sinh2 ξ
θ sinh ξ cosh ξ ,

u̇µ = − m2K0 −K2

3(m2K0 − 4K2)
tanh ξ∇µξ

+
m2K1 −K3

3(m2K0 − 4K2)
∇µβ . (50)

They can be further simplified using the recursive rela-
tion of Kn in Eq. (33). We choose to express K0 and K3

in terms of K1 and K2 as

K0 =
1

m2

(
K2 −

3

β
K1

)
,

K3 =
3

β

(
K2 +

1

β
K1

)
+m2K1 . (51)

Using these relations to substitute K0 in β̇, ξ̇, and u̇µ, as
well as K3 in u̇µ, we obtain results shown in Eq. (28) in
the main text.

On the other hand, the EOM of ωµν is derived by in-
serting Tµνeq and Sλ,µνeq into the angular momentum con-
servation law, i.e., Eq. (29) in the main text. After a few
steps of calculation, we obtain

m2K1ω̇
µν cosh ξ = −m2ωµν

(
θ +

d

dτ

)
(K1 cosh ξ)

−∂xλ
[
cosh ξ

(
Iµλρωνρ − Iνλρωµρ

)]
. (52)

Since ωµν can be decomposed as shown in Eq. (38), we
can also decompose ω̇µν in a similar way using the fluid
velocity vector uµ,

ω̇µν = ∆µ
α∆ν

βω̇
αβ − uµω̇ναuα + uν ω̇µαuα . (53)

We can solve ω̇µνuν (or ∆µ
α∆ν

βω̇
αβ) by contracting Eq.

(52) with uν (or with projection operators). The results
are given in Eqs. (31) and (32) in the main text. In the
calculations, we also used the recursive relation of Kn

in Eq. (33) to simplify the coefficients. We express all
coefficients in terms of K1 and K2 because they are re-
spectively related to the particle number density and the
energy density as K1 ' neq/ sinh ξ +O(Kn2, Knχs, χ2

s)

and K2 ' εeq/ cosh ξ +O(Kn2, Knχs, χ2
s).
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