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I. THEORY

For a superconducting qubit dispersively coupled to a cavity, the Hamiltonian of the

system can be written as H = (ωr +χσz)a
†a+ωqσz/2, which means the resonant frequency

of the cavity depends on the state of the qubit. The photon state in the readout cavity can

be calculated from the evolution of annihilation operator,

∂α

∂t
= −i(ωd − (ωr + χσz))α−

κ

2
α +

√
κc/2αin (S1)

where κc is the damping rate of the cavity to the transmission line and κ = κc + κi is the

total damping rate, with κi being the internal damping rate of the cavity. ωd is the frequency

of the probe field and αin represents the strength of the probe field. From Eq. (S1), the

steady state in the readout cavity can be written as α =

√
κc/2αin

i(ωd−(ωr+χσz))+κ/2
. According to

the input-output theory, photon states of transmission and reflection from the hanger cavity

can be written as

αT (ωd, σz) = αin −
√
κc/2α

= (1− κc/κ

1 + 2i(ωd − ωr − χσz)/κ
)αin,

αR(ωd, σz) = −
√
κc/2α

= − κc/κ

1 + 2i(ωd − ωr − χσz)/κ
αin

(S2)

Therefore, for a given qubit state, when sweeping the probe frequency the measured cavity

response would be a circle on the phase plane, which is referred to IQ circle in the following

context. Examples can be found in Fig. 2(b) in the main text.

For a given probe frequency, the distance between the two pointer states corresponding

to the qubit states |g〉 and |e〉 from T and R would be

DT
ge = |αT (ωd, 1)− αT (ωd,−1)|

=
4κcχ|αin|√

(κ2 + 4χ2 − 4(ωd − ωr)2)2 + 16κ2(ωd − ωr)2

DR
ge = |αR(ωd, 1)− αR(ωd,−1)|

=
4κcχ|αin|√

(κ2 + 4χ2 − 4(ωd − ωr)2)2 + 16κ2(ωd − ωr)2

(S3)

From Eq. (S3), one can see that the distance between the two pointer states are equal, as a

result of the symmetrical coupling of the hanger cavity.
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FIG. S1: Schematic of the experimental setup.

In order to effectively collect the cavity photons, we use a beam splitter to combine

transmission and reflection signals, generating interference signals labeled as plus mode and

minus mode,

αint(ωd, σz) =
αT (ωd, σz)± eiθRTαR(ωd, σz)√

2
(S4)

where θRT characterizes the phase difference between transmission mode and reflection mode,

due to the imbalanced circuit lengths when they are interfered at the beam splitter. θRT

can be measured in the experiment. The distance between the two pointer states for the

interference output would be

Dint
ge (θ) = |αint(ωd, 1)± αint(ωd,−1)|

=

∣∣∣∣1± eiθrt√
2

∣∣∣∣ 4κcχ|αin|√
(κ2 + 4χ2 − 4(ωd − ωr)2)2 + 16κ2(ωd − ωr)2

(S5)

One can see that the distance between the two pointer states from interference output can

be maximally enlarged by a factor of
√

2 compared with that from either transmission or

reflection, as illustrated in inset of Fig. 3 in the main text.

As mentioned in Fig. 2(b) of the main text, IQ circle of the excited state is smaller than

that of the ground state, which can be explained by a finite qubit energy relaxation time T1

of the qubit. The diameter of the IQ circle can be estimated based on Eq. (S2) by taking
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ωd as the cavity resonance or a value far off the cavity resonance. The resulting distance

reads dg = αinκc/κ. For a finite T1, the measured cavity response when the qubit is in |e〉 is

partially mixed with that when the qubit is in |g〉, and the resulting diameter (normalized

to the input state) of the IQ circle can be written as

de/αin = κc/κ

∣∣∣∣1− exp

(
− tm

2T1

)
+ exp

(
− tm

2T1

)
exp(iδ)

∣∣∣∣ (S6)

where δ is the phase shift of the cavity response when the qubit is excited from |g〉 to |e〉,

which is about 4χ/κ. The exponential factor originates from the qubit energy relaxation. It

is clear that de will be smaller than dg, which explains the difference between Fig. 2(b) and

inset of Fig. 2(b) in the main text.

II. EXPERIMENTAL SETUP

Fig. 2(a) in the main text is a schematic of our sample and a part of the measurement

setup. The sample is made from an aluminum film on a 7 mm×7 mm sapphire substrate.

The Josephson junction of the transmon qubit is made by Al/AlOx/Al. We use a hanger

type cavity dispersively coupled to the qubit for state readout. The sample is wire bonded

onto a PCB board in an aluminium sample box and cooled to about 14 mK by a dilution

refrigerator. The measurement setup is illustrated in Fig. S1. Details about the device

parameters are listed in Table S1. In particular, as shown in Fig. S1, three Josephson

parametric amplifiers (JPA) are used in the single shot qubit state measurement, for which

signal gains of 20 dB, 14 dB and 21 dB for transmission, reflection and interference outputs,

respectively. The JPAs are not used during the steady state spectral measurements for the

cavities.

Transmission and reflection are interfered with a hybrid coupler (Krytar 4040124) as

illustrated in Fig. S1. In order to keep the off-chip optical lengths for T and R as close as

possible, we use three 15 inch RF cables and four SMA connectors/adapters to connect the

chip with the interfering hybrid coupler for both T and R. In order to realize varied θRT for

different qubits, the readout cavity for each qubit is equally spaced by about l = 2.5 mm

along the transmission line, which naturally serves as a path difference of 2l between the

signals through T and R. In the experiments we will also measure θRT for each qubit, as

discussed in Appendix III. It worth noting that for the purpose of applying the proposed
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TABLE S1: device parameters

Q1 Q2 Q3 Q4 Q5

ωr/2π(GHz) 7.9224 7.9756 8.1237 8.1366 8.1460

Qi 8350 10502 8794 8391 2580

Qc 6821 5704 7044 3846 3289

ωq(GHz) 5.938 5.642 6.067 5.933 5.313

χ/2π(MHz) -0.4 -0.25 -0.35 -0.4 -0.35

T1(µs) 2.40 1.82 1.19 3.24 8.92

θRT -1.42 0.11 0.70 1.82 2.60

scheme to realize simultaneous improvement for multiple cavities coupled to a common

transmission line, the cavity spacing can be set to half of the wavelength corresponding to

the mean resonance frequency of the cavities, and a cryogenic phase shifter is required to

compensate the global relative phase difference induced by the possible imbalanced optical

path between reflection and transmission.

The amplification factors of the three output lines have to be carefully calibrated before

making comparison among output T , R and T +R. In principle it can be done by counting

attenuation and amplification factors of all microwave elements on the three output lines.

But in practice it would be tricky to achieve a high accuracy calibration in this way, since

the calibrations have to be done at room temperature but the experiments are carried out

at cryogenic temperature. Therefore, we perform the calibration by comparing spectra

measured from the three outputs.

In Fig. 2(a), after hybrid couplers the photon states from T , R and T +R can be related

as

a+0 = aT0 + aR0 (S7)

As illustrated in Fig. S1, after passing HEMT, room temperature amplifiers and other mi-

crowave elements, the photon states get amplified and acquire an additional phase. The

corresponding photon state can be written as AT = cTaT0 , AR = cRaR0 and A+ = c+a+0 ,

where cT , cR and c+ represent the correspondingly amplification factors of each output line.

The amplified state can be measured with a vector network analyzer. From Eq. (S7) we
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have

A+ =
c+

cT
AT +

c+

cR
AR, (S8)

which relates the three amplified state. The corresponding amplification factors can be ob-

tained by spectra fitting according to Eq. (S8), and thus the three outputs can be compared

through the calibrated amplification factors.

III. CALIBRATE THE RELATIVE PHASE

As indicated in Eq. (3) in the main text, the relative phase θRT is a critical parameter to

characterize the readout enhancement. θRT is related to the circuit length and microwave

elements before the hybrid coupler, thus it is difficult to be determined directly.

In this part we describe an effective approach to determine θRT for each qubit. We send a

microwave probe at the frequency ωr −χ with an average photon number of N , which is on

resonance with the cavity when the qubit is at the ground state |g〉. Due to the conservation

of energy, we get following equations

|αTg |2 + |αRg |2 = rgN,

|αTe |2 + |αRe |2 = reN,
(S9)

where the factor 1-rg or 1-re is the internal loss introduced by the cavity when the qubit is

at |g〉 or |e〉 , which can be obtained from the spectra of the cavity. Theoretically they are

given as

rg =

∣∣∣∣αT (ωr − χ,−1)

αin

∣∣∣∣2 +

∣∣∣∣αT (ωr − χ,−1)

αin

∣∣∣∣2
=

κ2c + κ2i
(κc + κi)2

re =

∣∣∣∣αT (ωr − χ, 1)

αin

∣∣∣∣2 +

∣∣∣∣αT (ωr − χ, 1)

αin

∣∣∣∣2
= 1− 2κcκi

(κc + κi)2 + 16χ2

(S10)

In order to avoid comparisons among different output lines, we focus on the same output

line but different qubit states. Comparing the photon states when the qubit is at |g〉 and
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|e〉 for either T and R, one would have

γT = αTe /α
T
g ,

γR = αRg /α
R
e

(S11)

where γT and γR are complex numbers which contain both the amplitude and phase infor-

mation. They can be measured in the experiment by comparing the output signals when

the qubit is set to |g〉 and |e〉, for either of the output line T or R.

Solving Eq. (S10) and Eq. (S11), the photon states can be written as

αTg =
√
N

√
rg − re|γR|2
1− |γTγR|2

,

αTe = γT
√
N

√
rg − re|γR|2
1− |γTγR|2

,

αRg = γR
√
N

√
re − rg|γT |2
1− |γTγR|2

,

αRe =
√
N

√
re − rg|γT |2
1− |γTγR|2

(S12)

Two of the relative phases among these four complex amplitudes are fixed by γT and γR,

and the remaining one can be absorbed into θRT in Eq. (S4) after interference.

Taking Eq. (S12) into Eq. (S4) we have

α+
g =

αTg + eiθRTαRg√
2

=

√
N

2

(√
rg − re|γR|2
1− |γTγR|2

+ γRe
iθRT

√
re − rg|γT |2
1− |γTγR|2

)
,

α+
e =

αTe + eiθRTαRe√
2

=

√
N

2

(
γT

√
rg − re|γR|2
1− |γTγR|2

+ eiθRT

√
re − rg|γT |2
1− |γTγR|2

)
.

(S13)

The amplitude ratio of the interference signal γ+ = α+
e /α

+
g can also be measured in the

experiment. The expression of θRT can be deduced based on Eq. (S4) and Eq. (S12), which

reads as

exp(iθRT ) =
αTe − γ+αTg
γ+αRg − αRe

=
(−γ+ + γT )

√
rg − re|γR|2

(−1 + γ+γR)
√
re − rg|γT |2

. (S14)

In the experiment, we first set the qubit in either |g〉 or |e〉, then send the cavity probe

signal at frequency ωr−χ with certain average photon numbers. On the output line of T , R
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and T +R, the photon states αT0(1), α
R
0(1) and α+

0(1) can be measured, from which γR , γT and

γ+ can be deduced from their definitions. All of the measurements are repeated for 40 times

to reduce statistical errors. Then the value of θRT can be calculated based on Eq. (S14).

The results are shown in the inset of Fig. 3 of the main text as the horizontal axis.

IV. SINGLE SHOT MEASUREMENT

In the single shot experiment we compare histogram plots of the measured cavity response

and the resulting fidelity when measuring from output T and output T + R. Since the

amplification and detection efficiency of the two output circuits are not necessarily the same,

we have to first calibrate the circuit parameters before the comparison. In the measurement

setup we use homodyne detection to map the amplified output photon state to the voltages,

therefore 〈α〉 and the variance of measured photon state is mapped as the mean value and

the variance of the measured voltage distribution. For a coherent state input readout signal,

the output signal can be regarded as a coherent state convoluted with the added noise from

the amplification chain. This added noise does not change the mean value of the measured

voltage, but it broadens the voltage distribution and thus leads to a larger variance σm [1].

Here we can define the circuit efficiency η = 1/(1 + N0) to describe the added noise N0.

It has been shown that the noisy variance σm and the original variance σ0 are related as

σm = σ0/
√
η [2].

The circuit efficiency can be calibrated by measuring the variance of voltage distribution

with different measurement time tm. Using the fitting model σm = c0/
√
tm, we can get

the parameter c0 which is proportional to 1/
√
η [2]. The corresponding measurement data

and fitting results for output T circuit and T + R circuit are shown in Fig. S2. We get

cT+R0 = 0.3598± 0.0008 and cT0 = 0.3915± 0.0006 respectively, with the ratio of the circuit

efficiencies ηT+R/ηT = (cT0 /c
T+R
0 )2 = 1.1838. When comparing the measurement results

between T and T +R, the variance of the histogram result for T +R output σT+R is rescaled

as σ′T+R = cT0 /c
T+R
0 σT+R to remove the efficiency difference between two output circuits.

After this process, Fig. 4(c) in the main text can be obtained.

Now we discuss the potential of reducing the total readout error when using path inter-

ference compared with using simply transmission or reflection. As mentioned in the main

text, the total readout error can be written as the sum of measurement error, qubit relax-
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FIG. S2: The variance of the readout signal as a function of measurement time for different circuits.

The blue (red) scattered plots are experimental data from output T (T +R), and the lines are the

corresponding fitting results.

ation induced error and thermal population induced error, The thermal population induced

error Pth can be estimated via the Boltzmann distribution, exp(−~ωq/kbTe)
1+exp(−~ωq/kbTe)

[3], where Te is

the device temperature. The thermal population induced error can be greatly suppressed

by improving the thermal anchoring of the sample and coaxial cables and using carefully

selected filters and attenuators [4], which we will not discuss here.

The measurement error Pm can be expressed in terms of measurement time tm and

distance D between two pointer states corresponding to the two qubit states, Pm =

1 − Erf(
√
ηtmD/

√
2) [2]. The distance of the pointer states D is related to the cavity

photon number nc as DT =
√
2κcnc√
1+( κ

2χ
)2

, where we take the distance on the output T DT as an

example. Neglecting the thermal population induced error, we have

Perr ∼ Pm + PT1

= 1− exp

(
− tm

2T1

)
+ 1− Erf(

√
ηtmD/

√
2). (S15)
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From Eq. (S15), a longer measurement time is preferred to reduce the measurement error,

but on the other hand will increase the qubit relaxation induced error. We can define an

optimized measurement time toptimal which yields the minimum total readout error. By

taking the derivative of Eq. (S15), toptimal can be obtained as

toptimal =
T1

ηD2T1 − 1
W(

2ηD2T1
π

(ηD2T1 − 1)), (S16)

where W is Lambert W function. The minimum qubit readout error Pmin
err (T1, D) can be

obtained by plug toptimal back into Eq. (S15). As a specific example, we take the circuit

efficiency η = 0.25, the cavity photon number nc = 20, the device temperature Te ∼ 20 mK,

and the qubit frequency ωq ∼ 6 GHz based on our measurement circuit. Then the total

readout error with the optimized measurement time for T and T+R outputs can be obtained

according to Eq. (S15) and Eq. (S16). The corresponding results are shown in Fig. 4(d) of

the main text.
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