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I. LATTICE MODEL FOR NUMERICAL
CALCULATION

Here, we elucidate the parameters for the interferom-
eter sketched in main text Fig. 1(a). The hard-wall
boundary in the y direction is described by the following
function

|y(x)| =



(
W − (W −WPCe

−(x+LM/2+LPC)2/302)
)
/2, −L < x < −(LM/2 + LPC),

WPC/2, −(LM/2 + LPC) ≤ x ≤ −LM/2,(
W − (W −WPCe

−(x+LM/2)2/302)
)
/2, −LM/2 < x < 0,(

W − (W −WPCe
−(x−LM/2)2/302)

)
/2, 0 ≤ x < LM/2,

WPC/2, LM/2 ≤ x ≤ (LM/2 + LPC),(
W − (W −WPCe

−(x−LM/2−LPC)2/302)
)
/2, (LM/2 + LPC) < x < L,

(1)

where W is the width of the lead, WPC and LPC are the
width and length of PC.

The whole devices can be described by Hamiltonian
H = HQSH + HR, where HQSH is the Hamiltonian of
QSHI and HR is the Hamiltonian of SOC. Here, we use
HgTe/CdTe quantum wells in our proposal, which can be
described by Bernevig-Hughes-Zhang model as

HQSH = −Dk2 +Akxτxσz −Akyτy + (M −Bk2)τz

=

 Dk +Mk Ak+ 0 0
Ak− Dk −Mk 0 0

0 0 Dk +Mk −Ak−
0 0 −Ak+ Dk −Mk

 ,

where σx,y,z and τx,y,z are Pauli matrices of spin and
orbital respectively. k± = kx ± iky, k2 = k2x + k2y,

Dk = −Dk2, and Mk = M − Bk2. A, B, D and M
are the material parameters which can be controlled by
experiment. The Hamiltonian of SOC is

HR = 0.5α(1 + τz)(kxσy − kyσx)

=

 0 0 −iαk− 0
0 0 0 0

iαk+ 0 0 0
0 0 0 0

 ,
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where α is Rashba coefficient.
In order to run numerical calculations, we use a

square lattice model for whole system by discretizing
the continuous effective hamiltonian H. By using k2 =
2a−2[2 − cos(kxa) − cos(kya)], kx = a−1 sin(kxa), ky =
a−1 sin(kya), we can derive the Hamiltonian to real space.
The lattice Hamiltonian is

H =
∑
i=1

c†iHiici +
∑
i=1

c†iHi,i+ax
ci+ax

+
∑
i=1

c†iHi,i+ay
ci+ay

+H.C.,
(2)

where ci = (cs,↑,i, cp,↑,i, cs,↓,i, cp,↓,i) are the annihilate op-
erators of electron with spin up and spin down in s and
p orbits at site i. The Hii, Hi,i+ax and Hi,i+ay are 4 ×
4 Hamiltonians,

Hii = −4D

a2
− 4B

a2
τz +Mτz,

Hi,i+ax =
D +Bτz

a2
+
Aτxσz

2ia
+
α(1 + τz)σy

4ia
,

Hi,i+ay =
D +Bτz

a2
+
iAτy
2a

+
iα(1 + τz)σx

4a
,

(3)

where lattice constant is a = 3nm. As a weak magnetic
field is applied along z−direction, the nearest neighbour

hopping Tij should add a Peierls phase, Tij×exp(i e~
∫ j

i
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mailto:Corresponding author: pchenweis@gmail.com


2

0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 00 . 0

0 . 5

1 . 0

0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 00 . 0

0 . 5

1 . 0

1 2 3 40 . 0 0

0 . 0 2

0 . 0 4

1 2 3 40 . 0

0 . 1

0 . 2

f l u x  [ Φ0]

 R   T 3 1   T t o t a l
 T   T 4 1

f l u x  [ Φ0]

 R   T 3 1   T t o t a l
 T   T 4 1

( d )( c )

( b )

ω [ 1 / Φ0 ]

 R
 R

ω [ 1 / Φ0 ]

 T
 T

( a )

FIG. 1. Oscillation patterns of scattering probabilities by
lattice simulation for (a) Vg = 0 and (b) random Vg with W =
10meV. The FFT spectrum of (c) the return probability R(R̄)
and (d) the transmission probability T (T̄ ). All parameters are
the same as those in main text Fig. 2 except for αR = 180
nm meV.
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FIG. 2. Oscillation patterns of scattering probabilities and
their FFT spectra. All parameters are the same as those in
main text Fig. 2 except for LRPC = 180 nm.

dr), where Tij is the hopping for site i to site j. The
vector potential is chosen as A = (−Bzy, 0, 0).

II. NUMERICAL RESULTS FOR DIFFERENT
PARAMETERS

First, we change the Rashba coefficient αR at the right
PC. The scattering probabilities T,R, T31, T41, Ttotal
(T̄ , R̄, T̄31, T̄41, T̄total) without (with) Vg averaging are
shown in Fig. 1. One can see that the main result-
s still hold, i.e., the random Vg quenches the Φ0-period
oscillation and leads to a dominant Φ0/2-period oscilla-
tion as shown in Figs. 1(a) and 1(b). There are three
peaks in the frequency domain of R, and only a single
peak at 2/Φ0 survives in R̄ after Vg averaging; see Fig.

1(c). Accordingly, the Φ0/2-period AAS oscillation over-
whelms the Φ0-period AB oscillation in the transmission
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FIG. 3. Oscillation patterns of scattering probabilities and
their FFT spectra. All parameters are the same as those in
main text Fig. 2 except for a different incident energy of 2
meV.
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FIG. 4. Oscillation patterns of scattering probabilities and
their FFT spectra with disorder strength 5 meV. All param-
eters are the same as those in main text Fig. 2.

probability T̄ as shown in Fig. 1 (d). Similar result-
s also hold as one varies the length LRPC of the right
PC as shown in Fig. 2. Fig. 3 shows the similar re-
sults with a different incident energy. The Φ0/2-period
oscillation dominates the return probability (R and R̄)
before and after Vg averaging. The Φ0-period oscillation
of the transmission probability is strongly suppressed by
the random Vg, while the Φ0/2 component remains unaf-
fected. We also show in Fig. 4 that our results are robust
against disorder. Since the main results are stabilized by
the time-reversal symmetry, the modification of the sam-
ple details will not change the qualitative results. From
Figs. 1-4, one can see that the averaged return proba-
bility R̄(Φ = 0) = 0 generally holds for various sample
parameters, indicating the universality of the predicted
signal of the helical edge states.
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