## Supplemental Material: Random-gate-voltage induced Al'tshuler-Aronov-Spivak effect in topological edge states

Kun Luo,<sup>1</sup> Wei Chen,<sup>1,2,\*</sup> Li Sheng,<sup>1,2</sup> and D. Y. Xing<sup>1,2</sup>

<sup>1</sup>National Laboratory of Solid State Microstructures and school of Physics, Nanjing University, Nanjing, 210093, China <sup>2</sup>Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China

(Dated: September 29, 2021)

## I. LATTICE MODEL FOR NUMERICAL CALCULATION

Here, we elucidate the parameters for the interferometer sketched in main text Fig. 1(a). The hard-wall boundary in the y direction is described by the following function

$$|y(x)| = \begin{cases} \left( W - (W - W_{PC}e^{-(x+L_M/2+L_{PC})^2/30^2}) \right)/2, & -L < x < -(L_M/2+L_{PC}), \\ W_{PC}/2, & -(L_M/2+L_{PC}) \le x \le -L_M/2, \\ \left( W - (W - W_{PC}e^{-(x+L_M/2)^2/30^2}) \right)/2, & -L_M/2 < x < 0, \\ \left( W - (W - W_{PC}e^{-(x-L_M/2)^2/30^2}) \right)/2, & 0 \le x < L_M/2, \\ W_{PC}/2, & L_M/2 \le x \le (L_M/2+L_{PC}), \\ \left( W - (W - W_{PC}e^{-(x-L_M/2-L_{PC})^2/30^2}) \right)/2, & (L_M/2+L_{PC}) < x < L, \end{cases}$$
(1)

where W is the width of the lead,  $W_{PC}$  and  $L_{PC}$  are the width and length of PC.

The whole devices can be described by Hamiltonian  $H = H_{QSH} + H_R$ , where  $H_{QSH}$  is the Hamiltonian of QSHI and  $H_R$  is the Hamiltonian of SOC. Here, we use HgTe/CdTe quantum wells in our proposal, which can be described by Bernevig-Hughes-Zhang model as

$$\begin{aligned} H_{QSH} &= -Dk^2 + Ak_x \tau_x \sigma_z - Ak_y \tau_y + (M - Bk^2) \tau_z \\ &= \begin{pmatrix} D_k + M_k & Ak_+ & 0 & 0 \\ Ak_- & D_k - M_k & 0 & 0 \\ 0 & 0 & D_k + M_k & -Ak_- \\ 0 & 0 & -Ak_+ & D_k - M_k \end{pmatrix}, \end{aligned}$$

where  $\sigma_{x,y,z}$  and  $\tau_{x,y,z}$  are Pauli matrices of spin and orbital respectively.  $k_{\pm} = k_x \pm ik_y$ ,  $k^2 = k_x^2 + k_y^2$ ,  $D_k = -Dk^2$ , and  $M_k = M - Bk^2$ . A, B, D and M are the material parameters which can be controlled by experiment. The Hamiltonian of SOC is

$$H_R = 0.5\alpha(1 + \tau_z)(k_x\sigma_y - k_y\sigma_x) \\ = \begin{pmatrix} 0 & 0 & -i\alpha k_- & 0 \\ 0 & 0 & 0 & 0 \\ i\alpha k_+ & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix},$$

where  $\alpha$  is Rashba coefficient.

In order to run numerical calculations, we use a square lattice model for whole system by discretizing the continuous effective hamiltonian H. By using  $k^2 = 2a^{-2}[2 - \cos(k_x a) - \cos(k_y a)]$ ,  $k_x = a^{-1}\sin(k_x a)$ ,  $k_y = a^{-1}\sin(k_y a)$ , we can derive the Hamiltonian to real space. The lattice Hamiltonian is

$$H = \sum_{i=1}^{n} c_i^{\dagger} H_{ii} c_i + \sum_{i=1}^{n} c_i^{\dagger} H_{i,i+a_x} c_{i+a_x} + \sum_{i=1}^{n} c_i^{\dagger} H_{i,i+a_y} c_{i+a_y} + H.C.,$$
(2)

where  $c_i = (c_{s,\uparrow,i}, c_{p,\uparrow,i}, c_{s,\downarrow,i}, c_{p,\downarrow,i})$  are the annihilate operators of electron with spin up and spin down in s and p orbits at site i. The  $H_{ii}$ ,  $H_{i,i+a_x}$  and  $H_{i,i+a_y}$  are  $4 \times 4$  Hamiltonians,

$$H_{ii} = -\frac{4D}{a^2} - \frac{4B}{a^2}\tau_z + M\tau_z,$$
  

$$H_{i,i+a_x} = \frac{D + B\tau_z}{a^2} + \frac{A\tau_x\sigma_z}{2ia} + \frac{\alpha(1+\tau_z)\sigma_y}{4ia},$$
 (3)  

$$H_{i,i+a_y} = \frac{D + B\tau_z}{a^2} + \frac{iA\tau_y}{2a} + \frac{i\alpha(1+\tau_z)\sigma_x}{4a},$$

where lattice constant is a = 3nm. As a weak magnetic field is applied along z-direction, the nearest neighbour hopping  $T_{ij}$  should add a Peierls phase,  $T_{ij} \times \exp(i\frac{e}{\hbar}\int_{i}^{j} \mathbf{A} \cdot$ 

<sup>\*</sup> Corresponding author: pchenweis@gmail.com



FIG. 1. Oscillation patterns of scattering probabilities by lattice simulation for (a)  $V_g = 0$  and (b) random  $V_g$  with  $\mathcal{W} =$ 10meV. The FFT spectrum of (c) the return probability  $R(\bar{R})$ and (d) the transmission probability  $T(\bar{T})$ . All parameters are the same as those in main text Fig. 2 except for  $\alpha_R = 180$ nm meV.



FIG. 2. Oscillation patterns of scattering probabilities and their FFT spectra. All parameters are the same as those in main text Fig. 2 except for  $L_{RPC} = 180$  nm.

dr), where  $T_{ij}$  is the hopping for site *i* to site *j*. The vector potential is chosen as  $\mathbf{A} = (-B_z y, 0, 0)$ .

## II. NUMERICAL RESULTS FOR DIFFERENT PARAMETERS

First, we change the Rashba coefficient  $\alpha_R$  at the right PC. The scattering probabilities  $T, R, T_{31}, T_{41}, T_{\text{total}}$  $(\bar{T}, \bar{R}, \bar{T}_{31}, \bar{T}_{41}, \bar{T}_{\text{total}})$  without (with)  $V_g$  averaging are shown in Fig. 1. One can see that the main results still hold, i.e., the random  $V_g$  quenches the  $\Phi_0$ -period oscillation and leads to a dominant  $\Phi_0/2$ -period oscillation as shown in Figs. 1(a) and 1(b). There are three peaks in the frequency domain of R, and only a single peak at  $2/\Phi_0$  survives in  $\bar{R}$  after  $V_g$  averaging; see Fig.

1(c). Accordingly, the  $\Phi_0/2$ -period AAS oscillation overwhelms the  $\Phi_0$ -period AB oscillation in the transmission



FIG. 3. Oscillation patterns of scattering probabilities and their FFT spectra. All parameters are the same as those in main text Fig. 2 except for a different incident energy of 2 meV.



FIG. 4. Oscillation patterns of scattering probabilities and their FFT spectra with disorder strength 5 meV. All parameters are the same as those in main text Fig. 2.

probability  $\overline{T}$  as shown in Fig. 1 (d). Similar results also hold as one varies the length  $L_{RPC}$  of the right PC as shown in Fig. 2. Fig. 3 shows the similar results with a different incident energy. The  $\Phi_0/2$ -period oscillation dominates the return probability  $(R \text{ and } \overline{R})$ before and after  $V_q$  averaging. The  $\Phi_0$ -period oscillation of the transmission probability is strongly suppressed by the random  $V_q$ , while the  $\Phi_0/2$  component remains unaffected. We also show in Fig. 4 that our results are robust against disorder. Since the main results are stabilized by the time-reversal symmetry, the modification of the sample details will not change the qualitative results. From Figs. 1-4, one can see that the averaged return probability  $\overline{R}(\Phi = 0) = 0$  generally holds for various sample parameters, indicating the universality of the predicted signal of the helical edge states.