Supplementary material: Prediction of an $\Omega_{bbb}\Omega_{bbb}$ dibaryon in the extended one-boson exchange model

Ming-Zhu Liu(刘明珠)^{1,2} and Li-Sheng Geng(耿立升)^{2,3,4,5,*}

 1 School of Space and Environment, Beihang University, Beijing 102206, China

 2 School of Physics, Beihang University, Beijing 102206, China

³ Beijing Key Laboratory of Advanced Nuclear Materials and Physics, Beihang University, Beijing 102206, China

⁴School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, Henan 450001, China

⁵Beijing Advanced Innovation Center for Big Data-Based Precision Medicine,

School of Medicine and Engineering, Beihang University, Beijing, 100191

I. ONLY S-WAVE INTERACTION

To directly compare with the lattice QCD studies [\[1,](#page-4-0) [2\]](#page-4-1), we show the results obtained with only S-wave interactions in the extended OBE model. Turning off the $S-D$ mixing, but with the same cutoffs Λ and coupling ratios r as given in Tables III and IV of the main text, we repeat the OBE study of the $\Omega_{ccc} \Omega_{ccc}$, $\Omega \Omega$, and $\Omega_{bbb} \Omega_{bbb}$ systems and search for bound states. The results are shown in Table [I.](#page-0-1) It is clear that without the S-D mixing, all the systems become less bound. Adding the Coulomb interaction, some of the dibaryons even become unbound. On the other hand, with a slight fine-tuning (increase) of the cutoff or coupling ratio, the systems can become bound as shown in Table [1.](#page-1-0) Therefore, as concluded in the main text, the extended OBE model supports the main results of the lattice QCD studies [\[1,](#page-4-0) [2\]](#page-4-1).

TABLE S1. Binding energy B and RMS radius R of the $J^P = 0^+$ $\Omega_{ccc} \Omega_{ccc}$, $\Omega \Omega$ and $\Omega_{bbb} \Omega_{bbb}$ bound states obtained with different ratios r and cutoffs Λ. The numbers in the brackets represent the results obtained with the Coulomb interaction taken into account. The "−" denotes that there exists no bound state.

Molecule J^P	Ratio r	$\Lambda ({\rm GeV})$	B (MeV)	R(fm)
$\Omega_{ccc} \Omega_{ccc}$ 0 ⁺		3.78	$2.6(-)$	$1.4(-)$
	1/2	4.60	$1.9(-)$	$1.6(-)$
0^+ $\Omega\Omega$	1	1.62	0.9(0.2)	4.0(6.1)
	1/2	2.83	$0.3(-)$	$5.9(-)$
$\Omega_{bbb}\Omega_{bbb}$		10.073	$1.1(-)$	$1.2(-)$
	1/2	10.718	$0.5(-)$	$1.7(-)$

TABLE S2. Binding energy B and RMS radius R of the $J^P = 0^+$ $\Omega_{ccc} \Omega_{ccc}$, $\Omega \Omega$ and $\Omega_{bbb} \Omega_{bbb}$ bound states obtained with different ratios r and cutoffs Λ. The numbers in the brackets represent the results obtained with the Coulomb interaction taken into account. The "−" denotes that there exists no bound state.

II. $J = 2$ CONFIGURATIONS

In the following, we discuss about the $J = 2$ configurations for the $\Omega \Omega$, $\Omega_{ccc} \Omega_{ccc}$ and $\Omega_{bbb} \Omega_{bbb}$ systems. For $J = 2$, the following combinations of angular momentum and spin are allowed: $(L = 0, S = 2)$, $(L = 2, S = 0)$, and

[∗] Corresponding author[: lisheng.geng@buaa.edu.cn](mailto: lisheng.geng@buaa.edu.cn)

 $(L = 2, S = 2)$. With these partial waves the relevant matrix elements of the spin-spin and tensor operators of the extended OBE potential are shown in Table [III.](#page-1-1)

State	Partial wave	$\langle \vec{a}_1\cdot\vec{a}_2\rangle$	$S_{12}(\vec{a}_1, \vec{a}_2, \vec{r})$	
	$\Omega_{ccc}\Omega_{ccc}\Big J=2\Big {}^{5}S_{2}{}^{-1}D_{2}{}^{-5}D_{2}\Big $		Ω $\overline{10}$ $\sqrt{5}$ Ω ◡ $\overline{10}$	

TABLE S3. Matrix elements of the spin-spin and tensor operators for the $\Omega_{ccc}\Omega_{ccc}$ system.

First, we notice that with the same parameters as those used for the $J = 0$ configurations studied in the main text, none of these systems bind, which indicates that in the extended OBE model, the $J = 0$ potential is more attractive than that of $J = 2$, in agreement with the quark model [\[3\]](#page-4-2).

Next we investigate whether these systems can bind with reasonable cutoffs. For the $\Omega_{ccc}\Omega_{ccc}$ system, with a cutoff of 4.18 GeV and the coupling ratio $r = 1$, we obtain one bound state. If we change the coupling ratio to 1/2, we obtain a bound state for a cutoff of 5.45 GeV. Both cutoffs are much larger than those for $J = 0$ by about 0.4-0.9 GeV, which do not seem very natural. With the same approach, we obtain the results for the $\Omega\Omega$ and $\Omega_{bbb}\Omega_{bbb}$ as shown in Table [IV.](#page-1-2) Judging from the cutoffs needed to obtain bound states, we conclude that although a $J = 2 \Omega_{bbb}\Omega_{bbb}$ dibaryon is unlikely, a $J = 2 \Omega\Omega$ dibaryon cannot be ruled out. We show the binding energy of $\Omega\Omega$, $\Omega_{ccc}\Omega_{ccc}$ and $\Omega_{bbb}\Omega_{bbb}$ as a function of the cutoff with S-D mixing turned on for the cases of $r = 1$ and $r = 1/2$ in Figs. [1-6].

TABLE S4. Binding energy B and RMS radius R of the $J^P = 2^+ \Omega_{ccc} \Omega_{ccc}$, $\Omega \Omega$ and $\Omega_{bbb} \Omega_{bbb}$ bound states obtained with different ratios r and cutoffs Λ. The numbers in the brackets represent the results obtained with the Coulomb interaction taken into account. The " −" denotes that there exists no bound state.

Molecule J^P	Ratio r	Λ (GeV)	B (MeV)	R(fm)
$\Omega_{ccc} \Omega_{ccc} 2^+$		4.18	$7.6(-)$	$0.9(-)$
	1/2	5.45	$6.6(-)$	$0.9(-)$
2^+ $\Omega\Omega$		1.80	5.4(3.9)	1.8(2.0)
	1/2	3.83	2.5(1.1)	2.4(3.1)
2^+ $\Omega_{bbb}\Omega_{bbb}$		10.393	$3.5(-)$	$0.67(-)$
	1/2	11.378	$5.3(-)$	$0.55(-)$

FIG S1. With and without the Coulomb interaction, the binding energy of the $J = 0 \Omega\Omega$ dibaryon as a function of the cutoff for the cases of $r = 1$ and $1/2$.

3

FIG S2. With and without the Coulomb interaction, the binding energy of the $J = 2 \Omega \Omega$ dibaryon as a function of the cutoff for the cases of $r = 1$ and $1/2$.

FIG S3. With and without the Coulomb potential, the binding energy of the $J = 0$ $\Omega_{ccc} \Omega_{ccc}$ dibaryon as a function of the cutoff for the case of $r=1$ and $1/2$.

FIG S4. With and without the Coulomb potential, the binding energy of the $J = 2 \Omega_{ccc} \Omega_{ccc}$ dibaryon as a function of the cutoff for the case of $r=1$ and $1/2$.

FIG S5. With and without the Coulomb potential, the binding energy of the $J = 0 \Omega_{bbb} \Omega_{bbb}$ dibaryon as a function of the cutoff for the case of $r\!\!=\!\!1$ and $1/2.$

FIG S6. With and without the Coulomb potential, the binding energy of the $J = 2 \Omega_{bbb} \Omega_{bbb}$ dibaryon as a function of the cutoff for the case of $r=1$ and $1/2$.

- [1] S. Gongyo et al., [Phys. Rev. Lett.](http://dx.doi.org/10.1103/PhysRevLett.120.212001) 120, 212001 (2018), [arXiv:1709.00654 \[hep-lat\].](http://arxiv.org/abs/1709.00654)
- [2] Y. Lyu, H. Tong, T. Sugiura, S. Aoki, T. Doi, T. Hatsuda, J. Meng, and T. Miyamoto, (2021), [arXiv:2102.00181 \[hep-lat\].](http://arxiv.org/abs/2102.00181)
- [3] H. Huang, J. Ping, X. Zhu, and F. Wang, (2020), [arXiv:2011.00513 \[hep-ph\].](http://arxiv.org/abs/2011.00513)