Supplementary Material: Chalcogenide Perovskite YScS₃ as

a potential p-Type Transparent Conducting Material

Han Zhang(张涵)^{1,2}, Chen Ming(明辰)^{2*}, Ke Yang(杨科)^{3,4}, Hao Zeng(曾浩)⁵, Shengbai Zhang(张绳百)³, and Yi-Yang Sun(孙宜阳)^{2*}

¹School of Materials Science and Engineering, Shandong University, Jinan 250061, China
²State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China
³Department of Physics, Applied Physics & Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
⁴School of Physics and Electronics, Hunan University, Changsha, 410082, China

⁵Department of Physics, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA

* Corresponding authors. Email: mingchen@mail.sic.ac.cn and yysun@mail.sic.ac.cn

The CIF file for the optimized structure of YScS₃ in perovskite structure

```
data_YScS3_in_perovskite_structure
_cell_length_a
                  6.9991
_cell_length_b
                  9.5258
_cell_length_c
                  6.3716
_cell_angle_alpha 90.
_cell_angle_beta 90.
_cell_angle_gamma 90.
symmetry space group name H-M "P 21/n 21/m 21/a"
symmetry Int Tables number 62
_space_group.reference_setting '062:-P 2ac 2n'
space group.transform Pp abc a, b, c;0,0,0
loop_
space group symop id
_space_group_symop_operation_xyz
1 x, y, z
2 x+1/2, -y+1/2, -z+1/2
3 -x, y+1/2, -z
4 -x+1/2, -y, z+1/2
5 - x, -y, -z
6 -x+1/2, y+1/2, z+1/2
7 x,-y+1/2,z
8 x+1/2, y, -z+1/2
loop
_atom_site_label
atom site type symbol
_atom_site_symmetry_multiplicity
_atom_site_Wyckoff_label
_atom_site_fract_x
atom site fract y
_atom_site_fract_z
atom site occupancy
Y1 Y
        4 c 0.40087 0.25000 0.04004 1.00000
Sc1 Sc 4 a 0.00000 0.00000 0.00000 1.00000
        4 c 0.04892 0.25000 0.85653 1.00000
S1 S
S2 S
         8 d 0.68506 0.42882 0.17658 1.00000
```

The CIF file for optimized structure of YScS3 in UFeS3 structure

data_YScS3_in_UFeS3_structure _cell_length_a 3.7176 _cell_length_b 12.0855 9.1832 _cell_length_c _cell_angle_alpha 90. cell angle beta 90. _cell_angle_gamma 90. _symmetry_space_group_name_H-M "C 2/m 2/c 21/m" symmetry Int Tables number 63 _space_group.reference_setting '063:-C 2c 2' space group.transform Pp abc a, b, c;0,0,0 loop_ space group symop id _space_group_symop_operation_xyz 1 x, y, z 2 x, -y, -z 3 - x, y, -z + 1/24 -x, -y, z+1/2 5 - x, -y, -z6 -x, y, z 7 x, -y, z+1/2 8 x, y, -z+1/2 9 x+1/2, y+1/2, z 10 x+1/2, -y+1/2, -z 11 -x+1/2, y+1/2, -z+1/2 12 -x+1/2, -y+1/2, z+1/2 13 -x+1/2, -y+1/2, -z 14 -x+1/2, y+1/2, z 15 x+1/2, -y+1/2, z+1/2 16 x+1/2, y+1/2, -z+1/2 loop _atom_site_label _atom_site_type_symbol _atom_site_symmetry_multiplicity _atom_site_Wyckoff_label _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z atom site occupancy 4 c 0.00000 0.25275 0.25000 1.00000 Y1 Y Sc1 Sc 4 a 0.00000 0.00000 0.00000 1.00000 4 c 0.00000 -0.08586 0.25000 1.00000 S1 S S2 S 8 f 0.00000 0.35849 0.56369 1.00000

Figure S1. Imaginary part of dielectric constant (ε_2) of YScS₃ in the UFeS₃ structure.

Table S1. The hole effective mass of potential p-type transparent conducting materials. The unit is m_0 . The values of m_h^1 , m_h^2 and m_h^3 were collected from a computational electronic transport database,¹ which was generated using PBE functional without considering spin-orbit coupling (SOC) effect. The conductivity effective mass m_c was calculated according to the formula shown in the main text. It can be seen that none of these materials exhibit m_c smaller than 0.5 m_0 .

	m_h^1	m_h^2	m_h^3	mc
AlN	0.43	3.58	3.58	1.04
GaN	1.56	1.56	1.85	1.65
ZnO	1.85	1.85	2.96	2.11
ZnS	1.07	1.07	1.61	1.20
In ₂ O ₃	6.05	6.05	6.05	6.05
SnO ₂	1.47	1.47	2.11	1.64
CuAlO ₂	1.92	1.92	5.22	2.43
CuAlS ₂	1.02	1.76	1.76	1.42
CuGaO ₂	2.46	2.46	5.00	2.96
CuI	0.86	0.86	0.86	0.86
BaCuSeF	0.69	0.69	253	1.03
BaCuTeF	0.52	0.52	137	0.78
Al ₂ Se ₃	0.64	0.69	308	1.00
MgS	0.98	0.98	0.98	0.98
MgSe	1.24	1.24	1.24	1.24
MgTe	1.31	1.71	1.71	1.55

¹ F. Ricci, W. Chen, U. Aydemir, G. J. Snyder, G.-M. Rignanese, A. Jain, and G. Hautier, Scientific Data **4**, 170085 (2017).

	Mg	Ca	Sr	Ba	Zn
On Y site	1.11	0.78	0.66	0.87	1.35
On Sc site	0.73	1.37	2.06	3.19	1.34

Table S2. Calculated formation energy of p-type dopants at Y and Sc sites in neutral charge state using the SCAN functional. The unit is eV.