supplementary material

Enhancement of Curie temperature under built-in electric field in Multi-functional Janus vanadium dichalcogenides

Shilei Ji(季石磊), Hong Wu(武红), Shuang Zhou(周双), Wei Niu(钮伟), Lujun Wei(魏陆军), Xing 'ao

Li(李兴鳌)**, Feng Li(李峰)**, Yong Pu(普勇)**

¹New Energy Technology Engineering Laboratory of Jiangsu Provence & School of Science, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing 210023, China

Fig. S1. The atomic structures of the 2H- (a) VSSe, (c) VSeTe, (e) VSTe and 1T- (b) VSSe, (d) VSeTe, (f) VSTe monolayers. The hexagonal primitive cells are labeled in dark solid lines. The red, yellow, green and brown balls are V, S, Se and Te atoms, respectively.

	· ·	,	0		5		
	Lattice (Å)	V- S (Å)	V– Se (Å)	V– Te (Å)	V-S-V (deg)	V-Se-V (deg)	V-Te-V (deg)
2H-VS ₂	3.17	2.36	_	_	84.34	_	_
2H-VSe ₂	3.33	—	2.50	—	—	83.52	_
2H-VTe ₂	3.57	_	—	2.72	—	_	82.14
2H-VSSe	3.25	2.35	2.51	—	87.26	80.69	
2H-VSeTe	3.45	_	2.50	2.72		87.43	78.86
2H-VSTe	3.37	2.35	_	2.71	91.62	_	76.75
1T-VS ₂	3.18	2.35	—		84.79	_	_
1T-VSe ₂	3.34	_	2.49	_	_	83.99	_
1T-VTe ₂	3.56		_	2.71	_		81.86
1T-VSSe	3.27	2.35	2.50		88.21	81.39	_
1T-VSeTe	3.46	_	2.48	2.72	—	88.14	78.96
1T-VSTe	3.41	2.34	_	2.73	93.36	_	77.07

Table S1. The lattice constant, bond length, bond angle of the Janus VXX' monolayers.

Fig. S2. The phonon spectrum calculations for the six Janus-VXX'. It can be clearly seen that the phonon spectra of the six Janus-VXX' have no imaginary frequency, indicating that they are all dynamically stable and they can exist as free-standing 2D monolayers. Very recently, the Janus MoSSe monolayer has been successfully synthesized. The H_2 is passed into the chamber with MoS_2 to strip and replace the top-layer S atom, and then the Se powder is thermally evaporated to replace the H atom to synthesize the Janus MoSSe monolayer.^[1] We believe that the Janus VXX' monolayers can also be prepared in the same way.

Fig. S3. Per site magnetization of CrI_3 monolayer as a function of temperature. The dark squares are the Monte Carlo simulations. T_c based on our calculation for CrI_3 monolayer is 60 K, which agrees with the experimental result 45 K^[2].

Table S2. The exchange coupling constants (*J*) of 1T- and 2H- VXX' monolayers.

	J (meV)		J (meV)
1T-VSSe	-5.17	2H-VSSe	-22.62
1T-VSeTe	-20.78	2H-VSeTe	-33.24
1T-VSTe	-16.49	2H-VSTe	-23.34

1 T-VS ₂	-1.15	2H-VS ₂	-17.00
1T-VSe ₂	-6.54	2H-VSe ₂	-34.79
1T-VTe ₂	-13.1	2H-VTe ₂	-37.58

Table S3. The magnetic anisotropy energy of 1T- and 2H- VXX' monolayers.

	$E_{in-plane} - E_{out-of-plane} \ (meV / V \ atom)$		
	1T	2H	
VSSe	0.052	-0.413	
VSeTe	-0.171	-1.094	
VSTe	-0.520	-0.768	

References

- [1] Lu A Y, Zhu H, Xiao J, Chuu C P, Han Y, Chiu M H, Cheng C C, Yang C W, Wei K H, Yang Y, Wang Y, Sokaras D, Nordlund D, Yang P, Muller D A, Chou M Y, Zhang X and Li L J 2017 Nat Nanotechnol 12 744-749.
- [2] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P and Xu X 2017 *Nature* 546 270-273.