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A. Analysis of the experimental fluctuations

In this section we describe in detail the comparison between the measured fidelity of the sideband π-

transitions and the simulations of this transition and the Randomized benchmarking. To this end, we firstly

extract the fluctuations of the experimental conditions and using these obtained parameters to perform further

simulations of the fidelity. We distinguish the short-term fluctuations on time scales of 10 s and the long term

drifts on time scales of 1000 s of the magnetic field and microwave power. To extract the fluctuations we perform

Mont-Carlo simulations to fit the experimental data of Rabi oscillations.

The microwave radiation induces transitions between the |2,−2〉 state accompanied with motional state |n〉

and |1,−1〉 in motional state of |n′〉. The quantum states can be denoted by |ψ〉 =
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)
, where c2 and c1 are

the probability amplitude in the |2,−2〉 and |1,−1〉 states respectively. The atoms initially starts from |2,−2〉
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. Then the time evolution under the microwave pulse can be described by
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, where ∆ is the microwave detuning of the resonant transitions, Ω is the Rabi frequency of the resonant

microwave transitions which is proportional to the square root of the microwave power, and ω′ is the generalized

Rabi frequency Ω′ =
√

Ω2 + ∆2. The resonant microwave frequency is scanned detuning at a fixed pulse duration

such as 0.03 ms for the carrier transitions of |2,−2〉
⊗
|0〉 → |1,−1〉

⊗
|0′〉. The actual detuning ∆ will be

affected by an external magnetic field and changes the atomic energy levels due to the Zeeman effect. To create

a low-noise and stable magnetic field we use an ultra low-noise current supply and synchronize the experiments

with the ac lines to suppress the influence of 50 Hz magnetic field. And the generalized Rabi frequency Ω′ will

be affected both the fluctuations on the magnetic field and microwave power or the Rabi frequency Ω.
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Figure S1. Rabi oscillations and simulations. In (a) and (b), the carrier and third-order sideband transitions are driven as a

function of microwave pulse durations respectively. The experimental data points are shown with red points and simulations

are shown with blue points. Each point is obtained by averaging over 50 runs of experiments. The Monte Carlo simulations in

the conditions of {σB = 0.19 mG, σΩ = 0.012 Ω}. In (c) and (d), the least square values are shown as a function of σB and

σΩ with the corresponding Rabi frequencies as input parameters. The minimum of σΩ and σB are obtained from (c) and (d)

respectively.

To extract the fluctuations experienced by the atoms, as shown in Fig. S1, we measure the Rabi oscillations

of the |2,−2〉
⊗
|0〉 → |1,−1〉

⊗
|0′〉 transition and the |2,−2〉

⊗
|0〉 → |1,−1〉

⊗
|3′〉 transition which has a

relative small Rabi frequency of Ωsb3 = 2π × 0.618(8) kHz. We model the noise of the magnetic field and

microwave power with a white noise model that have the form of Gaussian (normal) distribution of f(x) =

exp
(
− (x−µf )2

2σ2
f

)
(f = B or Ω), where µf is the mean value and σf is the standard deviation. And we suppose that

the scaling factor between the Rabi frequency Ω and the square root of the microwave power
√
P is a constant

fc (fsb) for the carrier (sideband) transition. Thus the relative fluctuation on the Rabi frequency σΩc
/Ωc for

the carrier transition is equivalent to σΩsb
/Ωsb for the sideband transitions. So we express the microwave power

fluctuation as σΩ ∝ Ω and omit the subscripts for simplicity. The corresponding two-dimensional simulations

as functions of σB and σΩ are shown in Fig. S1(c) and (d) respectively. We extract σΩ = 0.012(1) Ω from

Fig. S1(c) and σB = 0.19(1) mG from Fig. S1(d). We note that, from Fig. S1(c), the fitted σB = 0.00(2)

mG is unphysical. The simulated Rabi oscillations of the carrier and third-order sideband transitions under the

condition of {σB = 0.19 mG, σΩ = 0.012 Ω} are shown in Fig. S1(a) and (b) respectively.
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Figure S2. The Monte Carlo simulations of the multi-pulse sequence. The chi-square values are shown for different settings of

{σB , σΩ}. For σΩ = 0.012 Ω, the σB has a relative broad range of small chi-squares.

B. Simulation of the π-pulse transition and the RB sequence

To determine the fidelity of the motional state control, we apply a multi-π pulse sequence as described in

the main text. Rather than performing the standard randomized benchmarking, we extract the fidelity by an

analytical fitting and comparing with Monte Carlo simulations. We perform two-dimensional simulations for

different values of {σB, σΩ}, as shown in Fig. S2, which have a broad parameter range. Thus we do not fit the

fluctuations of magnetic field and microwave power in this data set but derive them from Rabi oscillations as

described previously. And we simulate the multi-π pulse sequence with the derived parameters which agree well

with the experimental measurements as shown in Fig. 4 (a) of the main text. The fidelity between two density

matrices ρ and σ is defined as F (ρ, σ) = (Tr
√√

ρσ
√
ρ)2. We denote ρ as the density matrix of the target state

and σ as the final state after the experimental sequence. We simulate 10000 random samples for different set

of magnetic field noise while keep σΩ = 0.012 Ω. The simulated fidelities are obtained from fitting of histogram

counts of the simulated data points and the error is denote as the 1σ width of the fitted curve. For the specific

condition of σB = 0.19 mG, as shown in Fig. S3, the obtained fidelity is 0.9973(3) with an error of 3E− 4. The

σB-dependent simulation results are depicted in Fig. 4 (b) of the main text. Before we upgrade the current

supply that generates the magnetic field, the σB is fitted to be 0.57 mG, and the obtained π-pulse fidelity is

0.981(3). After upgrading the current supply, the fidelity is raised to 0.996(1).

In Fig. 4 (b), the measured fidelities of the π-transition are smaller than the Monte Carlo simulations, it

may because the noise model used in the simulations are not very precise especially for long term drifts. The

long term drift of the magnetic field can be determined by monitoring the resonant transition frequency. The

microwave transition frequency drifts about 0.8 kHz on a typical time scale of 1000 s, which corresponds to

magnetic field drift of 0.4 mG. The drift of the microwave power can be determined by measuring the accurate

π-pulse duration. The drift is about 0.01 times the π-pulse duration. The long term drifts could cause an offset

in the pulse area which could lead to error cancellations in the multi-π sequence. As shown in Fig. S4, if there

is a constant offset in the pulse duration, the error cancellation will appear as an oscillating probability as a

of function pulse number. In experiment, these long-term drifts can be bypassed by calibrating experimental
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Figure S3. The histogram of the Monte Carlo simulations of the sideband π-pulse fidelity for {σB = 0.19 mG, σΩ = 0.012 Ω}.
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Figure S4. The error cancellation behavior. The red squares are the simulated results with a constant pulse duration error of

0.05τπ in the condition of {σB = 0.19 mG, σΩ = 0.012 Ω}. τπ is the π-pulse duration. When the offset error is set to 0.004τπ,

as filled circles shown, the error cancellation could be effectively suppressed.

parameters frequently (as filled circles shown in Fig. S4). The effect of residual drifts may still affect the

measured fidelity after calibration, but the error cancellation does not emerge obviously in the multi-pulse

measurement in Fig. 4 (a) in the main text.

Different single-qubit gates have different sensitivity to experimental fluctuations. The average fidelity of

single qubit gates in a Clifford group is typically obtained by performing randomized benchmarking (RB) [2].

In RB, 24 single-qubit Clifford gates are applied in random sequences to estimate the average gate errors, where

the definition of the gates can be fond in ref. [3]. Starting from one qubit state |0〉, the RB sequences are

introduced and end up with a final gate to flip the qubit state, in the ideal case without errors, to |1〉. The

resulting probabilities in |1〉 decay exponentially with the number of gates l as [2]

P =
1

2
+

1

2
(1− dif )(1− 2ε)l (A2)

, where dif is the depolarization probability associated with state preparation, measurement, and the final

transfer gate, while ε is the average error per gate. The average fidelity of a Clifford gate is F = 1− ε, where ε

is the corresponding error.

We perform Monte Carlo simulations of RB and obtain average fidelities for different experimental fluc-

tuations which are shown in Fig. S3. For the specific case of {σB = 0.19 mG, σΩ = 0.012 Ω}, the simulation

results and its fitting are shown in Fig. S5, leading to an average fidelity of 0.995(2). Due to the sensitivity to



5

0 10 20 30 40 50 60
0.0

0.2

0.4

0.6

0.8

1.0

Number of gates
P
ro
ba
bi
lit
y

Figure S5. The Monte Carlo simulations of the randomized benchmarking with 24 single-qubit Clifford gates. σΩ is set to 0.012

Ω and σB is set to 0.19 mG. The randomized gates are applied in ten different random sequence. The solid curve is a fit to

Equation (A2) of the average probabilities at each number of gates, the average values and corresponding standard deviations

are not shown. The resulting average fidelity is 0.995(2) corresponding to an average error of 0.005(2).

errors of pulse area and phase coherence of the Clifford gates, the average fidelities in RB are typically lower

than the calculated π-pulse fidelities and the standard deviations of the average fidelities are also larger than

π-pulse fidelities.
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