Supplementary Materials: Design of lead-free films with high energy storage performance via inserting single perovskite into Bi4Ti3O12

Qiong Wu(吴琼), Xin Wu(邬新), YueShun Zhao(赵悦顺), and Shifeng Zhao(赵世峰)*

Inner Mongolia Key Lab of Nanoscience and Nanotechnology, & School of Physical

Science and Technology, Inner Mongolia University, Hohhot 010021, China

Fig. S1. (a) *P-E* hysteresis loops of $0.15Bi_5FeTi_3O_{15}-0.5Bi_4SrTi_4O_{15}-0.35Bi_4BaTi_4O_{15}$ films, (b) $0.15Bi_6Fe_2Ti_3O_{18}-0.5Bi_4Sr_2Ti_5O_{18}-0.35Bi_4Ba_2Ti_5O_{18}$ films, (c) $0.15Bi_7Fe_3Ti_3O_{21}-0.5Bi_4Sr_3Ti_6O_{21}-0.35Bi_4Ba_3Ti_6O_{21}$ films at same electric field of 1000 kV/cm.

Fig. S2. (a) *P-E* hysteresis loops of $0.15Bi_5FeTi_3O_{15}$ -0.5Bi₄SrTi₄O₁₅-0.35Bi₄BaTi₄O₁₅ films. W_{re} and η are only 19.6 J/cm³ and 31.5%, respectively at applied electric field of 2200 kV/cm. (b) *P-E* hysteresis loops of 0.15Bi₆Fe₂Ti₃O₁₈-0.5Bi₄Sr₂Ti₅O₁₈-0.35Bi₄Ba₂Ti₅O₁₈ films. W_{re} and η are 46.5 J/cm³ and 55.5%, respectively at applied electric field of 2600 kV/cm.

^{*}Author to whom correspondence should be addressed; E-mail: zhsf@imu.edu.cn, Tel. and fax: +86 471 499 3141.

Fig. S3. Logarithm of leakage current density and electric field in Fig. 4(e) respectively.

Table S1. The values of	f slope obtan	ned by fitting eac	h curve in Fig. S3.
-------------------------	---------------	--------------------	---------------------

<i>T</i> (°C)	Slope 1	Slope 2	Slope 3
20	0.95	1.27	-
60	0.62	1.34	2.55
100	0.58	1.53	2.65
125	0.70	1.55	2.48