Supplementary Materials: Superconductor-metal quantum transition at the EuO/KTaO₃ interface

Yang Ma(马扬)^{1†}, Jiasen Niu(牛佳森)^{1†}, Wenyu Xing(邢文宇)¹, Yunyan Yao(姚云焱)¹, Ranran

Cai(蔡冉冉)¹, Jirong Sun(孙继荣)^{2,3}, X. C. Xie(谢心澄)^{1,4,5}, Xi Lin(林熙)^{1,4,5}*, Wei Han(韩

伟)¹*

¹International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, P. R. China
²Beijing National Laboratory for Condensed Matter Physics & Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
³School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
⁴CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
⁵Beijing Academy of Quantum Information Sciences, Beijing 100193, P. R. China
[†]These authors contributed equally to the work
*Correspondence to: xilin@pku.edu.cn (X.L.) and weihan@pku.edu.cn (W.H.)

Supplementary Note 1. Estimation of the coherence length of the superconducting EuO/KTaO₃ interface.

The coherence length (ξ_{GL}) at absolute zero tempeature is calculated using the following equation,

$$\xi_{GL} = \sqrt{\frac{\Phi_0}{2\pi B_{\mathsf{C}\bot(T\to 0)}}},\tag{S1}$$

where Φ_0 is the quantum flux, $B_{C\perp(T\to 0)}$ is the critical perpendicular magnetic field at absolute zero tempeature. $B_{C\perp}$ at each tempeature can be obtained form the half value of the normal resitance during the superconductor-metal transition. Based on the $B_{C\perp}$ vs. *T* curve (Fig. S2), the critical magnetic field at zero temperature is determined to be ~ 1.51 T, and the coherence length is calculated to be ~ 14.8 nm.

Figure S1. The transport properties of the EuO/KTaO₃ interface in the VdP geometry.

(a) The schematic illustration of the van der Pauw measurement geometry of the $EuO/KTaO_3$ interface. (b) The electrical measurement of the interface superconductivity with the current along the KTaO₃ substrate's [1-10] and [11-2] directions. Inset: The measured resistance as a function of temperature from 300 K to 1.5 K.

Figure S2. The electron transport properties of the EuO/KTaO₃ interface above $T_{\rm C}$. (a-b) The sheet carrier density and electron mobility as a function of temperature.

Figure S3. Temperature dependence of the critical perpendicular magnetic field of the EuO/KTaO₃ interface. The red line represents the best linear fit.