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In this Supplemental Material, we present the detailed calculation of Born approximation in
section I. The derivation of conductivity and discuss the vertex correction in section II.

I. BORN APPROXIMATION

Let us start from solving the continuous model Hamiltonian
Eq.(1) in the main text. We consider the coordinate transfor-

mation kx =
√

k sin θ
v⊥

cos φ, ky =
√

k sin θ
v⊥

sin φ, kz = k
vz

cos θ.

H = v⊥(k2
x − k2

y )σx + v⊥2kxkyσy + vzkzσz.

= k
(

cos θ sin θe−i2φ

sin θei2φ − cos θ

) (S1)

The energy dispersion is εk,± = ±k = ±
√

v⊥(k2
x + k2

y )2 + vzk2
z ,

and the corresponding eigenvector is,
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2
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)
,UU† = I.
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The disorder averaged Green’s function is Ĝ = Ĝ0 + Ĝ0Σ̂Ĝ,
the self energy matrix from the Born approximation can be
written as Σ̂(E) = V̂Ĝ(E)V̂ , where the disorder matrix is V̂ =∑
r

V(r)|r〉σ0〈r|. Using the transformation matrix U,

〈k, s|V̂ |p, ν〉 =
1
N

∑
r

V(r)ei(k−p)·r
(
V++ V+−

V−+ V−−

)
.
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2
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2
) + e−i2(φk−φp) sin(
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2
) cos(

θp

2
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V−+ = − sin(
θk

2
) cos(

θp

2
) + e−i2(φk−φp) cos(

θk

2
) sin(

θp

2
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θk

2
) sin(

θp

2
) + e−i2(φk−φp) cos(

θk
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) cos(

θp

2
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And the Green’s function becomes diagonal under the trans-
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formation,

〈p, ν|Ĝ|p′, ν′〉 =

(
g+(p, E) 0

0 g−(p, E)

)
δpp′ ,

g±(p, E) =
1

E ∓ εp + iη

(S4)

Now we can express the self energy matrix under the eigen-
space as,

〈k, s|Σ̂|k′, s′〉 = Σ̂ks,k′ s′ (E) = 〈k, s|V̂Ĝ(E)V̂ |k′, s′〉 →
(
Σ++ Σ+−

Σ−+ Σ−−

)
δkk′

Σ++ =
1
N

∑
p

W2

12
1
2

(g+ + g−)

Σ−− = Σ++.

Σ+− = 0,Σ−+ = 0
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After performing the angle integration, the off diagonal
term Σ+− and Σ−+ vanish, and the diagonal term become i-
dentical Σ+− = Σ−+ = Σ(E) which leads to Σ̂ks,k′ s′ (E) =

〈k, s|V̂Ĝ(E)V̂ |k′, s′〉 = Σ(E)δkk′δss′ . The calculation shows
that the random scalar disorder do not generate off-diagonal
term in self energy matrix and the self energy is independen-
t on the band index ss′ and input momentum k. Then, we
calculate the momentum space integration to obtain explicit
expression.

Σ(E) =
1
N

∑
p

W2

12
1
2

(g+ + g−)

=
a3

LW2

12
2π2

(2π)3

1
2v⊥vz

∫ ωc

0
kdk

(E + iη)
(E + iη)2 − k2 ,

= −γE ln
ωc

|E|
− i

π

2
γE
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where the last line is obtained by taking the limit η → 0, we
have defined γ =

a3
LW2

96πv⊥vz
. These results is consistent with the

numerical simulation for weak disorder. From the real part
of self energy, we obtain the quasi-particle residue scale as
ZE ∝ (ln ωc

|E| )
−1 as E → 0, the appearance of logarithmic singu-

larities signify the strong modification of quasiparticle prop-
erties in the low energy regime. After considering all multi-
scattering effects, the results of Born approximation are re-
placed by a more general power law function as discussed in
the main text.
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II. KUBO-GREENWOOD FORMULA

σµµ(EF) = e2
∫

dω(−
∂ f (ω, EF)

∂ω
)
∫

d3k
(2π)3 Tr(ṽµA(k)vµA(k))

= −
e2

4

∑
tt′

tt′
∫

dω(−
∂ f (ω, EF)

∂ω
)
∫

d3k
(2π)3 Tr[ṽµĜt(k)vµĜt′ (k)].

(S7)
The spectral function is defined as Â = (ĜR−ĜA)/(2i). The

bare velocity operator is defined as vµ(k) = ∂µH(k),

vx = 2v⊥(kxσy + kyσx)
vy = 2v⊥(kxσx − kyσy)
vz = vzσz

(S8)

By directly calculating the trace using the eigen vector E-
q.(S2) and complete the integration, we obtain the Eq.(7) in
the main text. In Fig .S1, we compare the Zero tempera-
ture conductivity calculated from the data points of self en-
ergy with the results obtained from the fitting function of self
energy in the main text.

E
F
(t)

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

σ
xx

 (
σ

0 xx
)

0

0.5

1

1.5

2

2.5
(a)

γ=0.01

γ=0.02

γ=0.03
γ=0.04

γ=0.05

E
F
(t)

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

σ
zz

 (
σ

0 zz
)

0

5

10

15

(b)

FIG. S1. Zero temperature conductivity along kx direction σxx (a)
and ky direction σyy (b). The open circles are the numerical result-
s calculated from the data points of self energy, the solid lines are
obtained from the fitting function of self energy.

The vertex correction to the velocity operator is determined
by the Bethe-Salpeter equation (see Fig. S2),

ṽµ = vµ+ < V̂ĜtṽµĜt′ V̂ > (S9)

We note that there is no vertex correction for the velocity op-
erator ṽµ(k) along the x̂ or ŷ direction, since the Green’s func-
tions are even function of momentum k, while the velocity is

FIG. S2. Bethe-Salpeter equation of velocity operator under the lad-
der approximation, where vµ is the bare operator, and the red solid
line is disorder averaging Green’s function.

odd in momentum, vx/y(−k) = −vx/y(k), and the integration
vanishes.

In the ẑ direction, the vertex correction from Eq.(S9) can be
solved by ladder approximation. Here we consider the solu-
tion ṽz = Ltt′ (E)σz, and we have,

Ltt′ (EF) =
1

1 − γ
2 Πtt′ (EF)

(S10)

with the function Πtt′ (EF) defined as,

Πtt′ (EF) =

∫ ωc→∞

0
dk

2k(α + itη)(E + it′η)
[(α + itη)2 − k2][(α + it′η)2 − k2]

=


− 1, (t′ = t)
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α

η
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η

α
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α

η
), (t′ , t)

(S11)
Using these results, the conductivity along the ẑ direction

can be written as,

σzz(EF) = −
e2

4

∑
tt′

∫
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(2π)3 Ltt′ (EF)Tr(σzĜt(k, ω)vµĜt′ (k, ω))

= −σ0
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)
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In the Boltzmann limit EFτ � 1, the function Π+−(E) =

(α
η

+
η
α

) tan−1(α
η

) ≈ α
η
π
2 , if we take the first order Born ap-

proximation for η = 1
2τ = π γ2 EF , and drop the real part of

self energy (α = EF), we obtain Π+−(E) = 1
γ
. Thus, we find

σzz(EF) = 2 × σ0
zz
α
η
π
2 which is twice as large as the value

without the vertex correction. At the gapless point E = 0,
Π+−(E = 0) = 1, and we obtain,

σzz(EF) =
2σ0

zz

1 − ( γ2 )2
(S13)

With vertex correction, the minimum conductivity is depen-
dent on strength of disorder. However, this dependence is ex-
tremely small (order of γ2) for weak disorder.
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