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SECTION S1: SOLUTION OF THE QUANTUM CONFINED EXCITON UNDER ELECTRIC FIELD

The single particle Hez(Hhz) denotes the Hamiltonian of the electron(hole) in the inorganic layer under the electric field F, i.e., Hez(ze) = − ~2
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where Vconf is the infinite-potential-barrier for the electron and the hole, since they are confined in the single inorganic layer.
Eigenstates of Eq.(S1) are represented by the Airy functions Ai and Bi,
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where le(lh) = 1, 2, . . . is the subband index of the electron(hole), and Zle = −[2me/ (e~F)2]
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Here E(e)
le

(E(h)
lh

) is the le-th electron (lh-th hole) subband energy. The parameters are normalized as{
al = [1 + Ai2 (Zl±) /Bi2 (Zl±)]−1/2

bl = −alAi (Zl±) /Bi (Zl±) (S4)

, with Zl± = Zl(z = ±Lw/2). The eigenenergies El are determined by the (l − 1)-zeros of

S (El) = Ai (Zl+) Bi (Zl−) − Bi (Zl+) Ai (Zl−) . (S5)

SECTION S2: TREATMENT OF THE PUMPING AND DECAYING TERM

Here we deal with the time step containing the pumping and decaying term i∂tψ = i
(
R̂ − Γ |ψ|2

)
ψ, which can be written as
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)
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Since the Eq.(S6) is real, we have
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)
ρ. (S7)

Next we solve ρ (t) from Eq.(S7), and obtain
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Recalling Eq.(S6),

ψ′1 = e
∫ ∆t
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1. (S10)

Putting Eq.(S8) into the integral in Eq.(S10), we have∫ ∆t
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The second-order time splitting can be written as

ψ (t + ∆t) = e−i T
2 ∆te−i V
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