# Supplementary Material：Diffraction－Limited Imaging with a Graphene Metalens＊ 

Xueyan Li（李雪岩）$)^{1,2}$ ，Han Lin（林瀚）${ }^{2 *}$ ，Yuejin Zhao（赵跃进）${ }^{1 *}$ ，Baohua Jia（贾宝华）${ }^{2,3^{*}}$<br>${ }^{1}$ Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology，School of Optics and Photonics，Beijing Institute of Technology，Beijing 100081，China<br>${ }^{2}$ Centre for Translational Atomaterials，Swinburne University of Technology，P．O．Box 218，Hawthorn， VIC 3122，Australia<br>${ }^{3}$ The Australian Research Council（ARC）Industrial Transformation Training Centre in Surface Engineering for Advanced Materials（SEAM），Swinburne University of Technology，P．O．Box 218， Hawthorn，VIC 3122，Australia



Fig．S1：Experimental setup of the direct laser writing fabrication system．ES：electronic shutter；BES： beam expanding system；BS1 and BS2：beam splitter；Sample：Graphene film；OBJ：objective；CCD1 and CCD2：charge coupled device．The graphene lens is directly fabricated by a homemade DLW system on the graphene film of controllable thickness．The sample is mounted on a 3D nanometric piezo stage．A computer－controlled system can control the repetition rate，femtosecond pulsed and laser beam（ 100 fs pulse， $10 \mathrm{kHz}, 800 \mathrm{~nm}$ ，Coherent Libra）to reduce the graphene oxide film．


Fig. S2: Experimental setup for characterizing the focus of the graphene metalens. A collimated laser beam is worked at 500 nm as an incident light (a supercontinuum laser (Fianium) operating between wavelengths of 400 and $2,400 \mathrm{~nm}$ and used in conjunction with an acousto-optic tunable filter, to select a single wavelength with an approximate bandwidth of 8 nm ). BES: beam expansion system; OBJ microscopic objective lens; CCD: charge coupled device (Watec 902H).

## Design of the graphene lens

Design parameter of the graphene lens. The thickness of the prepared GO thin film is 200 nm and the corresponding thickness of graphene is 100 nm . The width of the laser fabricated graphene rings is chosen to be 500 nm . The focal length of the lens is set to be $200 \mu \mathrm{~m}$, and the diameter is $100 \mu \mathrm{~m}$. The focusing wavelength of the graphene lens is 500 nm . Transmission and refractive index of graphene and GO are shown in Table S1. The detailed structure parameters are shown Table S2.

Table S1. Design parameters of the graphene lens

| Diameter $(\mu \mathrm{m})$ | Focal Length $(\mu \mathrm{m})$ | Wavelength $(\mathrm{nm})$ | Width of Rings $(\mathrm{nm})$ |
| :---: | :---: | :---: | :---: |
| 100 | 200 | 500 | 500 |
| Thickness (Graphene) (nm) | Thickness $(\mathrm{GO})(\mathrm{nm})$ | Rings Number | NA |
| 200 | 100 | 123 | 0.82 |
| Transmission Index (GO) | Refractive Index (GO) | Transmission Index <br> (graphene) | Refractive Index <br> (graphene) |
| 0.6067 | 2.0275 | 0.2957 | 2.4605 |

Table S2. Structural parameters of the graphene lens.

| The number of rings | $R_{n}(\mu \mathrm{~m})$ | The number of rings | $R_{n}(\mu \mathrm{~m})$ | The number of rings | $R_{n}(\mu \mathrm{~m})$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2.9055 | 42 | 22.33 | 83 | 36.8305 |
| 2 | 3.1555 | 43 | 22.649 | 84 | 37.1215 |
| 3 | 3.4055 | 44 | 23.0305 | 85 | 37.446 |
| 4 | 3.6555 | 45 | 23.561 | 86 | 37.863 |
| 5 | 5.0195 | 46 | 23.9585 | 87 | 38.196 |
| 6 | 5.2695 | 47 | 24.341 | 88 | 38.4995 |
| 7 | 5.5195 | 48 | 24.91 | 89 | 38.7495 |
| 8 | 6.4615 | 49 | 25.2565 | 90 | 39.0325 |
| 9 | 6.7115 | 50 | 25.514 | 91 | 39.465 |
| 10 | 7.4565 | 51 | 25.8655 | 92 | 39.7925 |
| 11 | 7.7065 | 52 | 26.237 | 93 | 40.1095 |
| 12 | 8.248 | 53 | 26.7085 | 94 | 40.5515 |
| 13 | 8.775 | 54 | 27.1 | 95 | 40.86 |
| 14 | 9.025 | 55 | 27.4325 | 96 | 41.11 |
| 15 | 9.5605 | 56 | 27.719 | 97 | 41.376 |
| 16 | 9.8105 | 57 | 28.057 | 98 | 41.6855 |
| 17 | 10.0605 | 58 | 28.4995 | 99 | 42.055 |
| 18 | 10.6925 | 59 | 28.898 | 100 | 42.4175 |
| 19 | 11.3535 | 60 | 29.2495 | 101 | 42.7165 |
| 20 | 11.9935 | 61 | 29.571 | 102 | 42.9665 |
| 21 | 12.2435 | 62 | 29.821 | 103 | 43.2375 |
| 22 | 12.821 | 63 | 30.1085 | 104 | 43.578 |
| 23 | 13.3205 | 64 | 30.3585 | 105 | 43.9675 |
| 24 | 13.775 | 65 | 30.6565 | 106 | 44.277 |
| 25 | 14.2995 | 66 | 31 | 107 | 44.5815 |
| 26 | 14.8805 | 67 | 31.367 | 108 | 45.0205 |
| 27 | 15.5285 | 68 | 31.811 | 109 | 45.2705 |
| 28 | 16.022 | 69 | 32.1295 | 110 | 45.5205 |
| 29 | 16.447 | 70 | 32.396 | 111 | 45.815 |
| 30 | 16.833 | 71 | 32.707 | 112 | 46.134 |
| 31 | 17.3005 | 72 | 33.059 | 113 | 46.531 |
| 32 | 17.945 | 73 | 33.4925 | 114 | 46.83 |
| 33 | 18.401 | 74 | 33.8285 | 115 | 47.0805 |
| 34 | 18.851 | 75 | 34.139 | 116 | 47.34 |
| 35 | 19.4765 | 76 | 34.389 | 117 | 47.6455 |
| 36 | 19.86 | 77 | 34.685 | 118 | 48.0435 |
| 37 | 20.1865 | 78 | 35.159 | 119 | 48.3515 |
| 38 | 20.5885 | 79 | 35.4875 | 120 | 48.6465 |
| 39 | 21.016 | 80 | 35.82 | 121 | 49.114 |
| 40 | 21.5595 | 81 | 36.266 | 122 | 49.5645 |
| 41 | 21.97 | 82 | 36.5785 | 123 | 49.8145 |

