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I. CONFORMAL MAPPING OF QUANTUM QUENCHING A SEMI-INFINITE LINE

In order to introduce conformal mapping of global quantum quenching a semi-infinite line, first we need to represent
the time evolution of density matrix ρ(t) geometrically. The initial state |ψ0〉 is chosen to be a short-range correlated
state with correlation length β much less than the total system size, which can be considered as the ground state
of a gapped Hamiltonian. In such a choice of initial state, the system is expected to be thermalized to a finite
temperature T = 1/β at long-time limit. A much clearer description is to assume that |ψ0〉 can be written in the form

|ψ0〉 ∼ e−
β
4HCFT |b〉, where |b〉 is a conformal boundary state satisfying (T (x)−T (x))|b〉 = 0 [1, 2]. The factor e−

β
4HCFT

can be considered as a conformal mapping to the boundary state |b〉, giving the free energy F = πcl
6β2 . Technically, this is

the origin of the appearing effective temperature in quantum dynamics, with ρ(t) ∼ e−iHte−
β
4HCFT |b〉〈b|e−

β
4HCFTe+iHt.

It is worth noting that this assumption of thermalization is very strong, and is not always true. The first insight is that
the dynamical conserved free energy F has the same form with the finite-temperature thermalization [3, 4]. Moreover,
the reduced density matrix is found to be exponentially close to a thermal Gibbs state, once the interval falls inside
the horizon [1]. This fact strongly support the assumption we made. Based on above argument, we conclude that the
global quench of a semi-infinite line can be described by as an infinite half-strip as shown in the left panel of Fig. ??.

There, in fact, are more problems about the CFT calculation. The partial trace, which is required to calculate

the reduced density matrix, will result the branch cut along C =
{
z = x+ iτ ;x ∈ [0, l], τ ∈ [−β4 ,

β
4 ]
}

. A small disc

around the entangling points z0 =
{
l + iτ ; τ ∈ [−β4 ,

β
4 ]
}

will lead to the ultraviolet divergence, and need be removed

for regularization. In BCFT, a normal way is to introduce a boundary state |a〉, imposing around the entangling
points. The regulator |a〉 will raise a boundary term known as the Affleck-Ludwig boundary entropy [5], which is
also interesting to investigate. After this operation, the branch cut C becomes a surface connecting |a〉 and |b〉. It is
important to note that the geometry of an infinite half-strip, including the branch cut caused by the partial trace, is
topologically equivalent to an annulus (cylinder without boundaries). One can build a conformal mapping from the
original infinite half-strip to an annulus, where the two boundary states |a〉 and |b〉 locate at two edges, connecting
by the mapped branch cut. In such a geometry, the entanglement Hamiltonian can be considered as the generator of
translation, so it could be a good choice.

The conformal mapping w = f(z), from the infinite half-strip in z-plane to an annulus in w-plane, can be achieved
through following there steps. First, by ξ(z) = sinh( 2πz

β ), the infinite half-strip in z-plane is mapped to the right

half part of ξ plane. Note that the entangling points z0 are mapped to ξ0 = ξ(z0). Second, we map the entangling

points ξ0 to Re(ξ′0) = (0,+∞) by ξ → ξ′(ξ) = 1+ξ0
1+ξ0

· ξ+ξ0ξ−ξ0 . Third, applying w(ξ′) = log(ξ′), the right half ξ′ plane is

mapped to an annulus, with circumference 2π along v = Imw direction and width W along the u = Rew direction.
The entangling points are simply removed, and the branch cut C is mapped to a curve f(C) connecting the two edges
of the annulus (the two boundary states |a〉 and |b〉).

II. CALCULATION OF THE ENTANGLEMENT HAMILTONIAN

Once we build up the conformal mapping w = f(z) to an annulus, the entanglement Hamiltonian on original
geometry can be written as a local integral over the Hamiltonian density H(x). Remember that, on the annulus in
the w-plane, the entanglement Hamiltonian HE can be considered as the generator of translation along the v = Imw
direction, as

HE = −2π

∫
v=const

Tvvdu = 2π

[∫
f(C)

T (w)dw +

∫
f(C)

T (w)dw

]
, (1)
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where f(C) is the branch cut C after conformal mapping, and the Hamiltonian density T00 = −Tvv is written in terms
of the holomorphic and anti-holomorphic components T (w) and T (w). After mapping back to the z-plane, we have

HE = 2π

[∫
C

T (z)

f ′(z)
dz +

∫
C

T (z)

f ′(z)
dz

]
. (2)

Using equation 2, it is straightforward to obtain the entanglement Hamiltonian HE(t) in our considered case (after
analytical continuation τ → it), as

HE(t) = 2β

∫ l

0

sinh
[
π(x−l)
β

]
cosh

[
π(x−2t+l)

β

]
sinh

[
π(x+l)
β

]
cosh

[
π(x−2t−l)

β

]
cosh

(
2πt
β

)
sinh

(
2πl
β

)
cosh

[
2π(x−t)

β

] T (x, t)dx

+ 2β

∫ l

0

sinh
[
π(x−l)
β

]
cosh

[
π(x+2t+l)

β

]
sinh

[
π(x+l)
β

]
cosh

[
π(x+2t−l)

β

]
cosh

(
2πt
β

)
sinh

(
2πl
β

)
cosh

[
2π(x+t)

β

] T (x, t)dx .

(3)

Simply taking t = 0 in equation 3, one can obtain the entanglement Hamiltonian in equilibrium

HE(t = 0) = 2β

∫ l

0

sinh
[
π(x−l)
β

]
cosh

[
π(x−l)
β

]
sinh

[
π(x+l)
β

]
cosh

[
π(x+l)
β

]
sinh

(
2πl
β

)
cosh

(
2πx
β

) T00(x)dx

= β

∫ l

0

sinh
[
π(x−l)
β

]
sinh

[
π(x+l)
β

]
sinh

[
2π(l+x)

β

]
+ sinh

[
2π(l−x)

β

]T00(x)dx

= β

∫ l

0

{
sinh−1

[
2π(x− l)

β

]
− sinh−1

[
2π(x+ l)

β

]}−1
T00(x)dx .

(4)

An important limit is to take β →∞, i.e. the critical ground state. In this case, the above equation becomes

HE(t = 0) =

∫
A

π(l2 − x2)

l
H(x)dx , (5)

which implies that the entanglement Hamiltonian on lattice geometry has a different structure with the CFT Hamil-
tonian.

For quenching to long time t→∞, the entanglement Hamiltonian

HE(t→∞) = 2β

∫ l

0

sinh
[
π(l−x)
β

]
sinh

[
π(l+x)
β

]
sinh 2πl

β

T00(x)dx ' β
∫ l

0

T00(x)dx, (6)

shares the same structure with CFT Hamiltonian up to a global factor β.

III. SCALING BEHAVIOR OF THE ENTANGLEMENT SPECTRUM AND ENTROPY: FROM THE
WIDTH W OF THE MAPPED ANNULUS

In this section we show that the width W along the u = Rew direction of the mapped annulus plays important
role in entanglement spectrum and entropy. The width W can be expressed as W = Re(W) = 1

2 (W +W) with
W = f(iτ + l − ε) − f(iτ), where f(z) is the conformal mapping from the original infinite half-strip to the annulus.
A straightforward calculation (after analytical continuation to real time τ → it) gives

W = log

 2 sinh[ 2π(l−ε/2)β ] cosh( 2πt
β )

sinh( 2πε/2
β )

√
2 cosh( 4πl

β ) + 2 cosh( 4πt
β )

 (7)

By taking the long-time lime t→∞, one can obtain its thermal value

Wthermal := W (t→∞) = log
sinh[ 2π(l−ε/2)β ]

sinh( 2πε/2
β )

' 2π

β
l (8)
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The entanglement spectrum has the structure

Ei − Ej =
2π2(∆i −∆j)

Wthermal
' βπ

l
(∆i −∆j) (9)

where Ei is the i-th level of entanglement Hamiltonian, and ∆i is the level of i-th scaling operator. This also gives
the long-time entropy as

S(t→∞) ' πc

3β
l (10)

For the time after reaching the saturate time t = l, W can be calculated by expanding to the term in t, straightforward
algebra results

W (t > L) 'Wthermal −
1

2
exp[−4π(t− l)

β
] (11)

which shows an exponential approaching to thermalization.

IV. LATTICE EFFECT: INHOMOGENEOUS EFFECTIVE TEMPERATURE β

The lattice effect plays important role in realization of dynamical CFT in lattice models. In this section, we show the
effective temperature β is not uniform in lattice models, and strongly influences the behavior of dynamic entanglement
spectrum. Consider the long time limit of the global quench, which is described by a conformal mapping to the annulus
(cylinder without boundaries). The same geometry can also describe the finite-temperature thermalization. Recall
that the thermal density matrix with inverse temperature β has the form

ρthermal =
1

Z
e−βH =

1

Z
e−

∑
k βεkη

†
kηk , (12)

where the (integrable) Hamiltonian can be diagonalized in the momentum space as H =
∑
k εkη

†
kηk, and Z is the

normalization factor. In our case, the reduced density matrix can be written in a similar form

ρA =
1

Z̃
e−

∑
k εkξ

†
kξk . (13)

A direct comparison results a mode dependent effective temperature

βk = εk/εk . (14)

The entanglement spectra {Ei}, i.e. the eigenvalues of − log [ρA], are simply

Ei = − log

[
1

Z̃
e−

∑
k εkn

i
k

]
=
∑
k

εkn
i
k + log

[
Z̃
]

=
∑
k

βkεkn
i
k + log

[
Z̃
]
, (15)

where the occupation numbers nik = 0, 1. it is worth noting that, the renormalization factor Z̃, also the infinite order

entropy S
(n→∞)
A = E1 = log

[
Z̃
]
, is effectively coupled to all modes in the momentum space, as Z̃ =

∏
k(1 + e−εk).

However, the Schmidt gap E2−E1 is always dependent only on one βk corresponding to the lowest level in {εk}. The
above argument explains why the effective temperature β is inhomogeneous at different levels of entanglement spectra.
Moreover, through a derivation for Gaussian model, Calabrese and Cardy [6] show that β becomes independent on
k when the correlation length (inverse mass) of the initial state → 0. In our case, the mass term does not appear in
the Hamiltonian directly, but the correlation length β decreases with increasing the distance between g and gc = 1.
Therefore an initial state with g far away from the critical point gc = 1 is expected to give a better result in numeric,
we will show that this is the case in following section.

V. DEPENDENCE ON THE INITIAL g OF THE GLOBAL QUENCH

In this section we present numeric of dynamic entanglement spectrum for different initial g. A finite-size scaling
of the numerical results is shown in Fig. 1, and the same behaviors are observed in g < 1 ferromagnetic and g > 1
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FIG. 1. Finite-size scaling of entanglement spectrum of dynamic equilibrium state for different initial g, with scaling function
F (l) = l−1. Both cases of ferromagnetic g < (top) and paramagnetic g > 1 (bottom) are presented.

paramagnetic cases. As proposed in the last section and the main text, the convergence of entanglement spectrum
exhibits a dependence on the initial condition (the distance between initial g and the critical point gc = 1) of the
global quench. The case of initial g = 4, presented in the main text, is a typical example of short-range correlated
state with β � L. A very quick convergence in finite-size scaling can be directly observed. As shown in Fig. 1(a) and
(d), when the initial g is far away from the critical point, the slope of scaling function F (l) = l−1 shares the same
value for different levels. When the initial g becomes closer to the critical point, especially when g = 0.8 and 1.2, the
scaling function F (l) = l−1 even not works for dynamic entanglement spectrum, since the initial state is no longer a
short-range correlated state. In Table. I, we list the numerical results after finite-size scaling for different initial g. As
we argued, when initial g is closer to the critical point, i.e. the gap is smaller, the numerical results are inconsistent
with the CFT prediction.



5

TABLE I. A comparison of the operator content in dynamic equilibrium state during global quench from different initial g.
Here ∆ and D are the eigenvalue and degeneracy of i-th level respectively.

i-th
sector

CFT g = 0.2 g = 0.5 g = 0.8 g = 1.2 g = 2.0 g = 4.0
level ∆ D ∆ D ∆ D ∆ D ∆ D ∆ D ∆ D

3 ε 3/2 1 1.50 1 1.50 1 1.51 1 1.51 1 1.50 1 1.50 1
4 I 2 1 2.00 1 2.00 1 2.01 1 2.01 1 2.00 1 2.00 1
5 ε 5/2 1 2.50 1 2.51 1 2.52 1 2.52 1 2.51 1 2.50 1
6 I 3 1 3.00 1 3.01 1 3.02 1 3.02 1 3.01 1 3.00 1
7 ε 7/2 1 3.50 1 3.52 1 3.54 1 3.52 1 3.53 1 3.50 1
8 I 4 2 4.00 2 4.01(2) 2 4.04(7) 2 4.03(9) 2 4.01(3) 2 4.00 2
9 ε 9/2 2 4.50 2 4.51(4) 2 4.49(59) 2 4.42(61) 2 4.51(5) 2 4.50 2
10 I 5 2 5.00 2 5.02(4) 2 5.04(7) 2 4.98(5.06) 2 5.03(5) 2 5.00 2
11 ε 11/2 2 5.50 2 5.52(6) 2 5.45(63) 2 5.33(61) 2 5.53(7) 2 5.50(1) 2
12 I 6 3 6.00 3 6.04(6) 3 6.01(11) 3 5.90(6.08) 3 6.05(7) 3 6.00(1) 3
13 ε 13/2 3 6.46(50) 3 6.54(7) 3 6.40 1 6.26 1 6.55(7) 3 6.50(1) 3
14 I 7 3 7.00 3 7.07 3 6.62(5) 2 6.55(60) 1 7.07(9) 3 7.01 3
15 ε 15/2 4 7.49(50) 4 7.57 4 6.93(7.09) 3 6.78 1 7.57(9) 4 7.50(1) 4
16 I 8 5 7.99(8.00) 5 8.06(9) 5 7.33 1 6.93(9) 2 8.06(10) 5 8.00(1) 5
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