Supplemental Material：Quantum Approach to Fast Protein－Folding Time

Li－Hua $\mathrm{Lu}\left(\right.$ 吕丽花）${ }^{1}$ and You－Quan $\mathrm{Li}(\text { 李有泉 })^{1,2, *}$
${ }^{1}$ Zhejiang Province Key Laboratory of Quantum Technology \＆Device and Department of Physics， Zhejiang University，Hangzhou 310027，P．R．China．
${ }^{2}$ Collaborative Innovation Center of Advanced Microstructure， Nanjing University，Nanjing 210008，R．R．China．

I．METHODS

For $n=4$ ，the structure set consists of 4 ob－ jects and the connection graph defined by the one－ step folding is just a three－star graph（see Fig．1（b））． There are totally 16 possible sequences in the sequence set $Q_{4}=\{[1],[2], \cdots,[16]\}$（see Table SI for details） This sequence set is partitioned into three subsets，i．e．， $\mathcal{Q}_{4}=\left\{Q_{1}, Q_{2}, Q_{3}\right\}$ with $Q_{1}=\{[1],[3],[5],[7]\}, Q_{2}=$ $\{[2],[4],[6],[8],[9],[11],[13],[15]\}$ and $Q_{3}=\{[10]$ ， ［12］，［14］，［16］\}. Their corresponding potential energies $\left(\mathcal{E}_{1}, \mathcal{E}_{2}, \mathcal{E}_{3}, \mathcal{E}_{4}\right)$ are calculated as $(0,0,0,0),(0,0,0,-1)$ and $(0,0,0,-2.3)$ respectively．Thus there will be three situations in the discussion on the time evolution．For the classical random walk on graph \mathcal{G}_{4} ，we have

$$
\tilde{K}=\left(\begin{array}{cccc}
-1 & 1 / 3 & 0 & 0 \\
1 & -1 & 1 & 1-\Omega \\
0 & 1 / 3 & -1 & 0 \\
0 & 1 / 3 & 0 & -1+\Omega
\end{array}\right)
$$

where $\Omega=\left(\mathcal{E}_{4}\right)^{2} /\left[\left(\mathcal{E}_{4}\right)^{2}+1\right]$ with the contact energy $\mathcal{E}_{4}=$ $0,-1$ ，and -2.3 respectively for Q_{1}, Q_{2} and Q_{3} cases． For each case we solve the equation（4）with the initial condition $p_{a}(0)=\delta_{a, 1}$ and $p_{a}(0)=\delta_{a, 4}$ ，respectively， and get the time evolution of $p_{a}^{(1)}(t)$ and $p_{a}^{(4)}(t)$ where the superscript is used to distinguish the solutions with different initial conditions．

A．The density matrices

The quantum walk on a graph \mathcal{G}_{n} is described by the time evolution of a density matrix that is governed by the matrix equation（6）of the main textwhere the Hamilto－ nian $\hat{H}^{[\nu]}$ is of sequence $[\nu]$ dependent．As an example， we first illustrate the case of $n=4$ ，for which the Hamil－ tonian reads

$$
\hat{H}^{[\nu]}=\left(\begin{array}{cccc}
0 & -1 & 0 & 0 \tag{1}\\
-1 & 0 & -1 & -1 \\
0 & -1 & 0 & 0 \\
0 & -1 & 0 & \mathcal{E}_{4}^{[\nu]}
\end{array}\right)
$$

where $\mathcal{E}_{4}^{[\nu]}=0$ for the sequences in the subset $Q_{1}, \mathcal{E}_{4}^{[\nu]}=$ -1 for those in Q_{2} ，and $\mathcal{E}_{4}^{[\nu]}=-2.3$ for those in Q_{3} ．For

[^0]each case，we substitute Eq．（1）into Eq．（6）of the main text to determine the time evolution of the 4 by 4 density matrix $\hat{\rho}(t)=\left\{\rho_{a, b}(t) \mid a, b=1,2,3,4\right\}$ ．In our numerical calculation，we set \hbar and J to be unity and take the time step as $\Delta t=0.02$ ．For the initial condition，$\rho_{11}(0)=1$ and the other matrix elements vanish when $t=0$ ，we solve the aforementioned first－order differential equation （6）of the main text by means of Runge－Kutta method and obtain the magnitudes of $\rho_{a b}^{(1)}(t)$ at any later time， $t=j * \Delta t$ with $j=1,2, \cdots$ ．

In order to have an intuitive picture we plot in Fig．S2 the density matrix at a certain time t when $\rho_{4,4}^{(1)}(t)$ first reaches its maximum value．The off－diagonal elements of density matrix in quantum mechanics are usually com－ plex numbers，so we use histogram heights to evaluate the modules and colors to label the phases of the complex numbers．The time dependence of the diagonal element of the solved density matrix for the Q_{3} case is plotted in Fig． 2 for an intuitive illustration．Likewise，we need to solve the density matrix for another initial condition， $\rho_{44}(0)=1$ again so that the first－passage probability can be determined．

Similarly，the study of the quantum walk on the graph \mathcal{G}_{6} is a task to solve the 22 by 22 density matrix from Eq．（6）of the main text for the forty－five situations（see Table SIII）one by one．Here the potential term in the total Hamiltonian is expressed as $V=\sum_{a=1}^{22} \mathcal{E}_{a}|a\rangle\langle a|$ with $\mathcal{E}_{a} \neq 0$ for $a=4,8,9,10,16,17,18,19$ and 20 while $\mathcal{E}_{a}=0$ for $a=1,2,3,5,6,7,11,12,13,14,15,21$ and 22 ． In terms the solved density matrices we can calculate the fist－passage probability furthermore．

B．The first－passage probabilities

For numerical calculation，the discrete version of Eq．（8）is given by

$$
\begin{align*}
& F_{14}(k * \Delta t)=\frac{P_{1,4}(k * \Delta t)}{\Delta t} \\
& \quad-\sum_{l=0}^{k-1} F_{1,4}(l * \Delta t) P_{4,4}((k-l) * \Delta t) \tag{2}
\end{align*}
$$

with $k=1,2, \cdots$ ．As we have $P_{1,4}(i * \Delta t)=\rho_{44}^{(1)}(i * \Delta t)$ ， $P_{4,4}(i * \Delta t)=\rho_{44}^{(4)}(i * \Delta t)$ together with the natural initial conditions $F_{1,4}(0)=0, P_{1,4}(0)=0$ and $P_{4,4}(0)=1$ ，the above relation（2）for $k=1$ gives rise to $F_{1,4}(\Delta t)=$ $P_{1,4}(\Delta t) / \Delta t$ ，and furthermore for $k=2, \cdots$ iteratively gives rise to $F_{1,4}(k * \Delta t)$ ．Since $F_{1,4}(k * \Delta t)$ oscillates with time，when $F_{1,4}(k * \Delta t)$ first appears to be negative
value, we record the corresponding value of k as k_{0}. This implies that the upper limit of integration τ_{0} in Eq. (9) of the main text is between the value of $\left(k_{0}-1\right) * \Delta t$ and $k_{0} * \Delta t$. In our calculation of the folding time, we take $\tau_{0} \approx\left(k_{0}-1\right) * \Delta t$ in the discrete version of the formula (9) consequently,

$$
\begin{equation*}
\tau_{\mathrm{fd}}=\frac{\sum_{k=1}^{k_{0}-1} k * \Delta t * F_{1,4}(k * \Delta t) * \Delta t}{\sum_{k=1}^{k_{0}-1} F_{1,4}(k * \Delta t) * \Delta t} \tag{3}
\end{equation*}
$$

We calculated the folding times numerically for each case, our results are listed in the Tables SIV, SV and SVI.

II. SUPPLEMENTAL FIGURES AND TABLES

FIG. S1. The contents of the structure set \mathcal{S}_{6}. There are twenty-two distinct structures for the amino-acid chain with six residues (the case of $\mathrm{n}=6$). Here the structures numbered as 9 , as 19 , and as 20 are called the most compact structures. The contact energy $\mathcal{E}_{a} \neq 0$ for the structure- a with $a=4,8,9,10,16,17,18,19$ and 20 , while $\mathcal{E}_{a}=0$ for the other structures.

(a) $\square^{1 \pi}$
(b)
(c)

-0.5π
-1π

FIG. S2. Color histogram of the density matrix. The solved density matrix at the first time when $\rho_{44}^{(1)}$ reaches its maximum value is plotted in terms of colored histogram, in which the heights evaluate the modules of the matrix element and the colors measured in the color-bar present their complexnumber phases. We plotted density matrices, respectively from the solutions, (a) for the subset Q_{1} at $t=1.82$, (b) for Q_{2} at $t=1.70$ and (c) for Q_{3} at $t=1.52$. Clearly, the existence of off-diagonal elements reflects the quantum coherence that speeds up the protein folding process.

FIG. S3. The evolution of quantum and classical probabilities. The time dependence of the diagonal elements of the quantum mechanical density matrix and the corresponding classical counterparts for the other two sequence subsets Q_{1} (left panel) and Q_{2} (right panel). The diagonal elements of the density matrix solved from the initial conditions (a) $\rho(0)=\left|s_{1}\right\rangle\left\langle s_{1}\right|$ and (b) $\rho(0)=\left|s_{4}\right\rangle\left\langle s_{4}\right|$. The corresponding classical solutions of the probability distribution solved from two initial conditions (c) $p_{b}(0)=\delta_{b 1}$ and (d) $p_{b}(0)=\delta_{b 4}$.

TABLE SI. The collection of sequences in the sequence set Q_{4}

$[1]=(P, P, P, P)$	$[2]=(P, P, P, H)$	$[3]=(P, P, H, P)$	$[4]=(P, P, H, H)$
$[5]=(P, H, P, P)$	$[6]=(P, H, P, H)$	$[7]=(P, H, H, P)$	$[8]=(P, H, H, H)$
$[9]=(H, P, P, P)$	$[10]=(H, P, P, H)$	$[11]=(H, P, H, P)$	$[12]=(H, P, H, H)$
$[13]=(H, H, P, P)$	$[14]=(H, H, P, H)$	$[15]=(H, H, H, P)$	$[16]=(H, H, H, H)$

TABLE SII. The collection of sequences in the sequence set Q_{6}

$$
\begin{array}{lll}
\hline \hline[1]=(P, P, P, P, P, P) & {[2]=(P, P, P, P, P, H)} & {[3]=(P, P, P, P, H, P)} \\
{[4]=(P, P, P, P, H, H)} & {[5]=(P, P, P, H, P, P)} & {[6]=(P, P, P, H, P, H)} \\
{[7]=(P, P, P, H, H, P)} & {[8]=(P, P, P, H, H, H)} & {[9]=(P, P, H, P, P, P)} \\
{[10]=(P, P, H, P, P, H)} & {[11]=(P, P, H, P, H, P)} & {[12]=(P, P, H, P, H, H)} \\
{[13]=(P, P, H, H, P, P)} & {[14]=(P, P, H, H, P, H)} & {[15]=(P, P, H, H, H, P)} \\
{[16]=(P, P, H, H, H, H)} & {[17]=(P, H, P, P, P, P)} & {[18]=(P, H, P, P, P, H)} \\
{[19]=(P, H, P, P, H, P)} & {[20]=(P, H, P, P, H, H)} & {[21]=(P, H, P, H, P, P)} \\
{[\text { [22] }=(P, H, P, H, P, H)} & {[23]=(P, H, P, H, H, P)} & {[24]=(P, H, P, H, H, H)} \\
{[\text { 25] }=(P, H, H, P, P, P)} & {[26]=(P, H, H, P, P, H)} & {[27]=(P, H, H, P, H, P)} \\
{[28]=(P, H, H, P, H, H)} & {[29]=(P, H, H, H, P, P)} & {[30]=(P, H, H, H, P, H)} \\
{[31]=(P, H, H, H, H, P)} & {[32]=(P, H, H, H, H, H)} & {[33]=(H, P, P, P, P, P)} \\
{[34]=(H, P, P, P, P, H)} & {[35]=(H, P, P, P, H, P)} & {[36]=(H, P, P, P, H, H)} \\
{[37]=(H, P, P, H, P, P)} & {[38]=(H, P, P, H, P, H)} & {[39]=(H, P, P, H, H, P)} \\
{[40]=(H, P, P, H, H, H)} & {[41]=(H, P, H, P, P, P)} & {[42]=(H, P, H, P, P, H)} \\
{[43]=(H, P, H, P, H, P)} & {[44]=(H, P, H, P, H, H)} & {[45]=(H, P, H, H, P, P)} \\
{[46]=(H, P, H, H, P, H)} & {[47]=(H, P, H, H, H, P)} & {[48]=(H, P, H, H, H, H)} \\
{[49]=(H, H, P, P, P, P)} & {[50]=(H, H, P, P, P, H)} & {[51]=(H, H, P, P, H, P)} \\
{[52]=(H, H, P, P, H, H)} & {[53]=(H, H, P, H, P, P)} & {[54]=(H, H, P, H, P, H)} \\
{[55]=(H, H, P, H, H, P)} & {[56]=(H, H, P, H, H, H)} & {[57]=(H, H, H, P, P, P)} \\
{[58]=(H, H, H, P, P, H)} & {[59]=(H, H, H, P, H, P)} & {[60]=(H, H, H, P, H, H)} \\
{[61]=(H, H, H, H, P, P)} & {[62]=(H, H, H, H, P, H)} & {[63]=(H, H, H, H, H, P)}
\end{array}
$$

TABLE SIV. Comparison of the protein folding times for the forty-five situations (A)

subset	$\tau_{\text {fd }}$	$\tau_{\text {fd }}^{\mathrm{c}}$	$\tau_{\text {fd }} / \tau_{\text {fd }}^{\mathrm{c}}$	subset	$\tau_{\text {fd }}$	$\tau_{\text {fd }}^{\mathrm{c}}$	$\tau_{\text {fd }} / \tau_{\text {fd }}^{\mathrm{c}}$
$Q_{1}:$	6.013334	136.035087	22.622240	$Q_{2}:$	3.098551	160.247563	51.716936
$Q_{3}:$	3.520525	96.315062	27.358153	$Q_{4}:$	2.967067	112.623345	37.957803
$Q_{5}:$	6.458355	146.705338	22.715589	$Q_{6}:$	2.866759	181.768820	63.405686
$Q_{7}:$	3.392589	103.502335	30.508362	$Q_{8}:$	2.889039	126.895859	43.923207
$Q_{9}:$	6.038505	157.593573	26.098111	$Q_{10}:$	2.921799	247.545879	84.723788
$Q_{11}:$	3.327806	110.875024	33.317755	$Q_{12}:$	2.801380	171.669173	61.280217
$Q_{13}:$	7.234799	169.607081	23.443233	$Q_{14}:$	2.946329	275.445274	93.487616
$Q_{15}:$	3.191671	118.864775	37.242177	$Q_{16}:$	2.708122	190.313983	70.275262
$Q_{17}:$	4.216321	68.078909	16.146519	$Q_{18}:$	4.724344	78.765355	16.672231
$Q_{19}:$	3.016037	72.794175	24.135704	$Q_{20}:$	3.612531	87.963045	24.349423
$Q_{21}:$	3.804250	77.658548	20.413629	$Q_{22}:$	3.512217	117.651074	33.497667
$Q_{23}:$	3.396357	82.796081	24.377909	$Q_{24}:$	3.900503	129.733781	33.260782
$Q_{25}:$	3.066039	156.489675	51.039688	$Q_{26}:$	2.388859	202.780028	84.885725
$Q_{27}:$	2.937746	110.044318	37.458759	$Q_{28}:$	2.441537	141.135648	57.806066
$Q_{29}:$	2.869247	210.959777	73.524439	$Q_{30}:$	2.303083	275.098917	119.448112
$Q_{31}:$	2.873812	146.665698	51.035244	$Q_{32}:$	2.232110	189.940402	85.094553
$Q_{33}:$	2.494938	301.894318	121.002734	$Q_{34}:$	2.343357	208.004786	88.763593
$Q_{35}:$	2.752986	237.048877	86.106096	$Q_{36}:$	5.974401	403.400204	67.521448
$Q_{37}:$	2.697952	164.314142	60.903286	$Q_{38}:$	2.304499	277.603821	120.461680
$Q_{39}:$	3.968589	77.036636	19.411593	$Q_{40}:$	3.528882	97.314095	27.576466
$Q_{41}:$	5.378916	100.994382	18.775973	$Q_{42}:$	3.597822	129.316623	35.943030
$Q_{43}:$	1.893287	141.255927	74.608830	$Q_{44}:$	3.922487	112.584764	28.702393
$Q_{45}:$	1.877747	187.603586	99.908873				

The data in the above is calculated by taking the structure- 9 as the target state.

TABLE SV. Comparison of the protein folding times for the forty-five situations (B)

subset	$\tau_{\text {fd }}$	$\tau_{\text {fd }}^{\mathrm{c}}$	$\tau_{\text {fd }} / \tau_{\text {fd }}^{\mathrm{c}}$	subset	$\tau_{\text {fd }}$	$\tau_{\text {fd }}^{\mathrm{c}}$	$\tau_{\text {fd }} / \tau_{\text {fd }}^{\mathrm{c}}$
$Q_{1}:$	3.007868	58.811334	19.552498	$Q_{2}:$	2.479394	56.885456	22.943290
$Q_{3}:$	2.915515	62.760625	21.526428	$Q_{4}:$	2.737002	60.829525	22.224874
$Q_{5}:$	2.662492	61.269774	23.012191	$Q_{6}:$	2.184729	55.766683	25.525675
$Q_{7}:$	2.610164	65.195489	24.977545	$Q_{8}:$	2.355810	59.440630	25.231504
$Q_{9}:$	2.561153	66.410402	25.929885	$Q_{10}:$	2.121793	80.139792	37.769845
$Q_{11}:$	2.650392	70.320819	26.532233	$Q_{12}:$	2.376243	83.876242	35.297839
$Q_{13}:$	2.298248	55.371229	24.092800	$Q_{14}:$	1.866984	62.231172	33.332461
$Q_{15}:$	2.443572	58.510481	23.944652	$Q_{16}:$	2.099786	65.095912	31.001213
$Q_{17}:$	3.058518	80.326256	26.263130	$Q_{18}:$	2.892302	78.325642	27.080727
$Q_{19}:$	4.049810	82.688870	20.417963	$Q_{20}:$	3.704805	75.757923	20.448559
$Q_{21}:$	4.850417	87.771468	18.095654	$Q_{22}:$	2.640431	100.666945	38.125194
$Q_{23}:$	2.511114	72.516173	28.878089	$Q_{24}:$	2.270134	77.941553	34.333459
$Q_{25}:$	1.352143	61.804911	45.708857	$Q_{26}:$	2.105304	57.913441	27.508351
$Q_{27}:$	2.544296	66.400618	26.097835	$Q_{28}:$	2.252789	63.908920	28.368800
$Q_{29}:$	1.286258	73.047173	56.790452	$Q_{30}:$	3.928691	66.756540	16.992057
$Q_{31}:$	1.301468	77.602514	59.626909	$Q_{32}:$	3.513602	72.667062	20.681643
$Q_{33}:$	1.785740	62.875193	35.209601	$Q_{34}:$	2.030462	67.511972	33.249562
$Q_{35}:$	4.781740	64.586440	13.506891	$Q_{36}:$	1.588760	60.753000	38.239256
$Q_{37}:$	2.076350	68.193510	32.842974	$Q_{38}:$	6.287673	64.546238	10.265521
$Q_{39}:$	2.414371	86.787849	35.946360	$Q_{40}:$	2.252013	90.261891	40.080537
$Q_{41}:$	2.096400	97.939811	46.718093	$Q_{42}:$	2.004589	98.749514	49.261726
$Q_{43}:$	2.138715	88.018182	41.154704	$Q_{44}:$	2.051656	84.318310	41.097684
$Q_{45}:$	1.935271	81.391188	42.056739				

The data in the above is calculated by taking the structure- 19 as the target state.

TABLE SVI. Comparison of the protein folding times for the forty-five situations (C)

subset	$\tau_{\text {fd }}$	$\tau_{\text {fd }}^{\mathrm{c}}$	$\tau_{\text {fd }} / \tau_{\text {fd }}^{\mathrm{c}}$	subset	$\tau_{\text {fd }}$	$\tau_{\text {fd }}$	$\tau_{\text {fd }} / \tau_{\text {fd }}^{\mathrm{c}}$
$Q_{1}:$	3.534390	107.326690	30.366397	$Q_{2}:$	3.109753	75.781759	24.369061
$Q_{3}:$	3.676584	115.724340	31.476050	$Q_{4}:$	3.021071	81.647239	27.025925
$Q_{5}:$	1.985434	113.879920	57.357696	$Q_{6}:$	2.996953	81.103898	27.062119
$Q_{7}:$	1.998518	122.248609	61.169631	$Q_{8}:$	2.765095	86.798091	31.390636
$Q_{9}:$	2.896183	73.311216	25.313047	$Q_{10}:$	6.663490	51.723617	7.762241
$Q_{11}:$	2.996405	78.338356	26.144115	$Q_{12}:$	3.925446	54.768113	13.952074
$Q_{13}:$	2.570879	76.241005	29.655618	$Q_{14}:$	2.167717	53.557491	24.706865
$Q_{15}:$	2.865303	81.211569	28.343100	$Q_{16}:$	2.252009	56.512998	25.094481
$Q_{17}:$	3.702682	151.733536	40.979359	$Q_{18}:$	4.962379	106.785040	21.518921
$Q_{19}:$	2.010765	158.129502	78.641463	$Q_{20}:$	4.560383	111.178045	24.379103
$Q_{21}:$	5.453139	99.879543	18.315972	$Q_{22}:$	4.751003	67.798839	14.270426
$Q_{23}:$	4.285138	102.503862	23.920784	$Q_{24}:$	4.327710	69.153246	15.979177
$Q_{25}:$	1.966476	123.623213	62.865356	$Q_{26}:$	3.305973	96.940512	29.322838
$Q_{27}:$	1.992959	133.386930	66.929089	$Q_{28}:$	2.592900	106.332739	41.009194
$Q_{29}:$	1.710127	160.168363	93.658753	$Q_{30}:$	3.101977	124.796863	40.231395
$Q_{31}:$	1.713752	169.914771	99.147818	$Q_{32}:$	2.756688	134.294122	48.715749
$Q_{33}:$	2.157100	60.285284	27.947376	$Q_{34}:$	7.491422	65.002142	8.676876
$Q_{35}:$	2.896166	100.987316	34.869312	$Q_{36}:$	2.057256	73.265667	35.613296
$Q_{37}:$	2.814767	106.795670	37.941211	$Q_{38}:$	2.157124	78.093837	36.202757
$Q_{39}:$	2.008037	175.248216	87.273400	$Q_{40}:$	4.387504	146.585522	33.409775
$Q_{41}:$	1.721760	211.679379	122.943604	$Q_{42}:$	8.130396	174.980161	21.521727
$Q_{43}:$	7.367946	85.202543	11.563948	$Q_{44}:$	3.710836	131.651748	35.477652
$Q_{45}:$	2.161168	98.745327	45.690722				

The data in the above is calculated by taking the structure- 20 as the target state.

TABLE SVII. Table of notations

n	number of the amino-acid residues
N_{n}	total number of protein structure (the lattice conformation)
\mathcal{S}_{n}	the structure set
\mathcal{G}_{n}	the connection graph
Q_{n}	the sequence set
a, b, c	index labelling the specific structure, which takes from 1 to N_{n}
$\mathcal{E}_{a}^{[\nu]}$	contact energy of the structure s_{a}, the superscript refers a given sequence $[\nu]$
$\mathcal{E}_{a b}$	the energy difference $\mathcal{E}_{a b}=\mathcal{E}_{a}-\mathcal{E}_{b}$
$J_{a b}$	the elements of adjacency matrix that characterizes the graph \mathcal{G}_{n}
$T_{a b}$	the elements of the probability transition matrix, $T_{a b}=J_{a b} / \operatorname{deg}(b)$
$\operatorname{deg}(b)$	the degree of vertex- b, deg $(b)=\sum_{a} J_{a b}$
L, L^{\dagger}	the Lindblad operator
$[\nu]$	labels for a particular sequence, where ν takes from 1 to 2^{n}
Q_{1}, Q_{2}, etc.	subsets in Q_{n}, the contact energies in each subset are degenerate
$\hat{\rho}$	density matrix
$\rho_{a b}$	the matrix elements of $\hat{\rho}$
p_{a}	classical probability distributions
$p^{(1)}(t), \hat{\rho}^{(1)}(t)$	the superscript here specifies the initial condition from which the solution is obtained
$P_{a, b}(t)$	probability from structure- a to structure- b at time t
$F_{a, b}(t)$	the first-passage probability from structure- a to structure- b at time t
τ_{0}	the time period that the first-passage probability vanishes $F_{a, b}\left(\tau_{0}\right)=0$
τ_{fd}	quantum folding time
$\tau_{\mathrm{fd}}^{\mathrm{c}}$	classical folding time

[^0]: ＊email：yqli＠zju．edu．cn

