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Zero Refractive Index Properties of Two-Dimensional Photonic Crystals with
Dirac Cones ∗
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The zero refractive index properties of two-dimensional photonic crystals (PCs) are studied theoretically. Three
necessary conditions for PCs to mimic the zero index materials (ZIMs) are obtained. In addition, through a
comparative study of the properties for two representative PC structures with different types of Dirac cones, we
find that the PC with a Dirac-like cone which meets the three necessary conditions does not behave as a ZIM
in some cases. Further analysis shows that its non-zero index properties originate from the flat dispersion band.
These findings clarify the fundamental physical issue of which type of Dirac cone PC can mimic a real ZIM.
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In recent years, zero index materials (ZIMs) have
attracted great interest for their powerful manipu-
lation of electromagnetic waves. All kinds of pe-
culiar optical effects have been achieved via ZIMs,
which include total reflection or total transmission,[1]
directional emission,[2] tunneling waveguides,[3] elec-
tromagnetic cloaks,[4] electromagnetic shielding,[5]
laser ignition,[6] optical unidirectional transmission
(UDT),[7] and so on. In addition, some novel kinds of
ZIMs were also proposed to implement some unique
functions; for example, anisotropic ZIMs can re-
alize the spatial power combination for omnidirec-
tional radiation.[8,9] Magnetic ZIMs can implement
ZIM functions at a flexible operating frequency.[10,11]
Doped semiconductors can exhibit a near-zero per-
mittivity with the additional advantages of being a
CMOS-compatible platform.[12] Topological insulators
can exhibit an epsilon-near-zero response at ultravio-
let frequencies.[13]

Recently, a class of photonic crystals (PCs) with
conical dispersion at 𝐾 = 0 has been demonstrated
to have zero refractive index (ZRI) near the Dirac
point.[14−16] This kind of PC ZIM has attracted much
attention since they were proposed because of their
non-absorption, matched impedance to the free space
and freely tunable frequency.[17−24] This novel PC
ZIM indicates that the conical dispersions and the ZRI
must be related in a certain way. Thus, it is interest-
ing to study the relationship between them. Moreover,
the Dirac cones in PCs can be classified into three dif-
ferent types (Dirac cone, Dirac-like cone and double
Dirac cone). Do the three types of Dirac cone play the
same role in realizing a ZIM? To answer these ques-
tions, we first theoretically study the relationship be-
tween the conical dispersions and the ZRI, and three
necessary conditions for PCs to mimic ZIMs are ob-
tained. In addition, we comparatively study the prop-
agation and transmission properties of the PCs with
two different types of Dirac cone possibly located at
the Γ point. The role of the non-conical dispersion
band is investigated carefully. All the findings clarify
the basic physical issue of which type of Dirac cone

PC can mimic a real ZIM.
We select a two-dimensional (2D) system to ana-

lyze our issue. In a 2D PC with a Dirac cone, the
light wave with electric component polarized in the 𝑧
direction meets the 2D massless Dirac equation[25]⎛⎝ 0 −𝑖𝑉D
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where 𝜓1 and 𝜓2 are the two eigenfunctions of the
electric fields with the same frequency 𝜔, 𝑉D is the
group velocity, and 𝜔D is the frequency of the Dirac
point. Inside the PC, the light wave should also meet
the Maxwell equations. If the PC can be regarded
as a homogenous material, the Maxwell equations are
reduced to the Helmholtz equation(︁ 𝜕2
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By applying Eq. (1) two times in Eq. (4), we obtain

𝑘2 =
(︁𝜔 − 𝜔D

𝑉D

)︁2
. (5)

At the Dirac point

𝑘2𝜔=𝜔D
= (𝑘𝑥𝑟 + 𝑖𝑘𝑥𝑖)

2 + (𝑘𝑦𝑟 + 𝑖𝑘𝑦𝑖)
2 = 0, (6)

where 𝑘𝑥𝑟, 𝑘𝑥𝑖, 𝑘𝑦𝑟 and 𝑘𝑦𝑖 are the real and imaginary
parts of the wave vector in the 𝑥 and 𝑦 directions,
respectively. If the Dirac point is located at the Γ
point (𝑘𝑥𝑟 = 0, 𝑘𝑦𝑟 = 0), the imaginary parts will
also be zero. Therefore, the effective refractive index
of this kind of PC is zero. In such a case, the PC
can behave as a ZIM. In contrast, if the Dirac cone
is not located at the Γ point, none of the real parts
and the imaginary parts of the wave vector will be
zero, and correspondingly the PC will have a nonzero
effective refractive index. The above analysis means
that to mimic a ZIM, the PC must meet three condi-
tions: firstly, the dispersion relations near the Dirac
point are conical. Secondly, the Dirac point is located
at the Γ point. Thirdly, the PC can be regarded as a
homogenous material. The last condition is indispens-
able, while it is frequently neglected. For example, at
some high frequencies, even the conical dispersions are
formed at the Γ point, and the PCs still do not possess
zero index properties.[19] The reason is that they can-
not be regarded as homogenous materials and Eq. (2)
cannot be used.

From the above analysis, it is known that the ZRI
of the PCs is only attributed to the conical dispersion.
And then, what is the effect of the non-conical disper-
sion band near the Dirac cone? To answer this ques-
tion, we select a double Dirac cone which consists of
two pairs of Dirac cones overlapping at the Dirac point
and a Dirac-like cone which consists of a Dirac cone
and a flat band also intersecting at the Dirac point to
compare them and identify the effect of the flat band.
For the Dirac-like cone PC (DL-PC), we choose a PC
consisting of dielectric rods with a square lattice as
illustrated in the inset of Fig. 1(a). Its band diagram
for transverse electric (TE) polarization (the electric
field is along the 𝑧-axis) is calculated using 𝑎 commer-
cial software FDTD solutions. In the calculation, the
radius and the permittivity of the dielectric rods are
set to be 𝑅 = 0.2𝑎 and 𝜀 = 12.5, respectively, where
𝑎 is the lattice constant. The calculated band struc-
ture is shown in Fig. 1(a), which shows that two linear
dispersion lines insect at the Γ point with the Dirac
point frequency of 0.541𝜔𝑎/2𝜋𝑐. Moreover, there is
an additional flat band crossing the two conical bands
at the Γ point, resulting in a threefold degeneration,
forming a Dirac-like cone. For the double Dirac cone
PC (DD-PC), we choose a PC with a triangle lattice
consisting of dielectric cylindrical shells as illustrated
in the center of Fig. 1(b). The outer and inner radii of
the dielectric shells are 𝑅 = 0.45𝑎 and 𝑟 = 0.2656𝑎, re-
spectively, and the permittivity of the shells is 𝜀 = 12.
We also consider the case of TE polarization and the
calculated band structure is shown in Fig. 1(b). It is
seen that four bands linearly intersect at a four-fold

degenerate point, forming two pairs of cones located
at the Γ point and at a frequency of 0.404𝜔𝑎/2𝜋𝑐. Un-
like the Dirac-like cone, in addition to the four conical
dispersion bands, there is no other non-conical band
near the double Dirac point. In the following calcu-
lation and analysis, the lattice constants for the two
PCs both take the value of 𝑎 = 0.5µm. Accordingly,
the wavelengths at the Dirac points of the two PCs
are 0.9227µm and 1.2387µm, respectively.
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Fig. 1. Photonic band structures for two different 2D di-
electric PCs. The inset in each band structure depicts its
PC structure and the coordinate system.

We put an electric dipole source inside the two PCs
and set its frequency to be exactly the Dirac point
frequency for each PC. Furthermore, to be consistent
with the polarization state of the band structure, the
electric field of the dipole source also takes the direc-
tion along the 𝑧-axis. The waves emitted from the
dipole resource and scattered by the rods (cylindri-
cal shells) can be regarded as propagating in all di-
rections. Thus all the permitted propagation modes,
not only the conical dispersion bands but also the
non-conical dispersion band, are excited in the PCs.
Then we observe their propagation properties inside
and outside the two PCs.

Figure 2 gives the stabilized electric field distri-
butions when the electric dipole is put inside a slab
made up of the PCs with a corner cut away, where
the white circles indicate the positions of the dipole
sources. Figures 2(a) and 2(b) represent the DL-PC
and the DD-PC, respectively. From the field distri-
butions shown in Fig. 2, it is seen that there is a dis-
tinct difference between the two fields. For the DL-
PC, both inside and outside the slab, the propagating
directions of the light are chaotic. Though the exit
surfaces are planes, their wave fronts are not paral-
lel to the exit surfaces and are even hard to identify.
This means that the wave front shaping function of the
ZIM does not work here. In contrast, for the DD-PC,
no matter which direction the exit surfaces are along,
the outgoing directions of the propagating waves are
always perpendicular to the exit surfaces. According
to the Snell law, it can be deduced that the effective
refractive index of the DD-PC is zero. Secondly, be-
cause of the influence of the dipole, the fields in both
the PCs are non-uniform. However, the field in the
DD-PC tends to become uniform as it goes further
away from the dipole source while the field in the DL-
PC does not manifest such a tendency. It is known
that if the PC has an effective zero index, the field
should become more and more uniform, thus we can
infer from the field distributions that the DL-PC does
not have an effective ZRI.
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Another fascinating property of the ZIMs is that
light is totally reflected at large incident angles while
it is transmitted under normal incidence. This effect is
a direct consequence of the Snell law when it is applied
to ZIMs. Figure 3 gives the transmittance through a
parallel slab made up of the two different PCs as a
function of the incident angle. The blue dashed line
and the red solid line represent the transmission curves
for the DD-PC and the DL-PC, respectively. In the
calculation, the layer numbers of the two PCs are both
taken to be 26. It is worth mentioning that, to obtain
the matched impedance to free space for the DD-PC,
we truncate the first and last layers of the cylindri-
cal shells with a cutting parameter of 𝐿 = 1.866𝑅, as
carried out in Ref. [24]. The same operations are also
performed in Figs. 4(b) and 5(c). Obviously, if the in-
cident angle is small enough, the maximum transmit-
tance of unit 1 is obtained for both the PCs. However,
with the increase of the incident angle, the transmit-
tance of the DD-PC decreases rapidly to zero in 5∘,
which agrees well with the property of an ideal ZIM.
However for the DL-PC, its transmittance does not de-
crease monotonically. At several incident angles, the
transmittances even increase dramatically and several
resonant transmission peaks up to 1 appear. Their
electric intensity patterns at the resonant angles are
extracted and given in the insets in Fig. 3. By investi-
gating the properties of these resonances, we find that
they are Fabry–Perot resonances between the two in-
terfaces of the slab. Because the phase change of a
round trip inside a ZIM slab is zero, these resonances
further prove that the effective refractive index of the
DL-PC is not zero.
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Fig. 2. The stabilized electric field distributions when a
dipole source is placed inside a DL-PC slab (a) and a DD-
PC slab (b) with a corner cut away, where the white circles
indicate the locations of the dipole sources.

From the above investigation, we know that when
the flat band is excited, the DL-PC does not present
zero index properties. Here we would like to ask the
question why the zero index properties as well as their
applications are still obtained although the flat band
always exists in the PCs.[14] Through careful study,
we find that all the incident directions upon the DL-
PC are normal incidence and this particular incident
condition avoids the excitation of the flat band mode
with a nonzero tangential wave vector. For normal in-
cidence, the tangential component of the wave vector
is 𝑘𝑥 = 0, and according to the conservation of the
wave vector along the interface, the tangential wave
vector inside the PC should also hold zero. Therefore,

the modes with a nonzero 𝑘𝑥 component of the flat
band cannot be excited and the PC still presents zero
index properties. Examples of zero index applications,
such as wave front shaping, cloaking and focusing are
all obtained.[14] As an example, Fig. 4 gives the dis-
tributions of the electric field when a plane wave is
incident normally upon the PC slab used in Fig. 2.
The blue arrows represent the incident directions and
the red arrows depict the outgoing directions. It is
seen that under this incident condition, inside the two
PCs, only the zero index mode can be excited, thus
the field is almost uniform throughout the whole PC.
Furthermore, the propagation directions outside the
PCs are all perpendicular to the exit surfaces. Ob-
viously, under normal incidence, at Dirac frequency,
when the flat band mode with the nonzero tangen-
tial wave vector of the DL-PC is suppressed, this PC
still behaves as a ZIM, while for the DD-PC, it always
presents zero index property no matter what incident
condition is taken.
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Fig. 3. Transmittances as a function of the incident angle
for two PC slabs, where the red solid curve represents the
DL-PC and the blue dashed curve represents the DD-PC.
The insets in the top right corner are the electric intensity
distributions inside the DL-PC slab at the corresponding
resonant incident angles.
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Fig. 4. The outgoing directions of the light wave from a
DL-PC slab (a) and a DD-PC slab (b) with a corner cut
away when a plane wave at each Dirac point frequency is
incident normally from the bottom.

To further demonstrate the differences of the two
PCs in implementing the functions of the ZIM, we
design a UDT structure based on the transmission
property of the ZIM. It is a dielectric grating and a
ZIM slab cascaded structure, as shown in Fig. 5(a).
By tuning the thickness of the dielectric grating, the
efficiency of the zeroth diffraction order can be ad-
justed to zero and all of the intensity is concentrated
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to the higher orders.[26] When light is incident from
the ZIM side normally, it will firstly transmit through
the ZIM and then be diffracted by the dielectric grat-
ing to the other side. In contrast, if the light is in-
cident from the grating side, it will be diffracted to
higher orders and then all these diffracted beams are
obliquely incident on the ZIM slab and reflected by
the ZIM slab. Thus, different transmittances will be
obtained when the light is incident upon this cascaded
structure from the opposite directions, and the UDT
effect is achieved. Here we use the two kinds of PCs
as the ZIM individually. If the PC has zero index,
the UDT effect will be obtained. In contrast, if the
PC is not a ZIM, this one-way transmission effect will
not be achieved. Figures 5(b) and 5(c) give the elec-
tric field distributions for the opposite incidences. In
calculation, we set the period and the filling factor of
the grating to be 𝑝 = 3µm and 𝑤/𝑝 = 0.5, respec-
tively. The refractive index of the grating dielectric
is taken to be 𝑛 = 1.4. In the field distributions, the
black arrows represent the incident directions and the
pink rectangles represent the positions of the dielectric
grating strips. To ensure the efficiencies of the zeroth
order diffraction in the two structures are both zero,
the thicknesses of the grating strips are selected to be
different as 𝐻 = 1.32µm and 𝐻 = 1.62µm.
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Fig. 5. (a) The unidirectional transmission mechanism
of a ZIM slab and a dielectric grating cascaded structure.
(b), (c) The electric field distributions for opposite inci-
dent directions using the two kinds of PC as the ZIM,
respectively.

From the distribution of the two fields, it is seen
that the UDT effect is only obtained using the DD-
PC as a ZIM. The fields inside the DD-PC are nearly
uniform for both the forward and backward incident
directions which agree well with the ZIM. As for the
DL-PC structure, when light is incident from the grat-
ing side, its transmission is not completely restrained.
In addition, the fields inside the DL-PC are inhomo-

geneous for both incident directions, which further
demonstrates that the DL-PC does not behave as a
ZIM.

In conclusion, we have theoretically studied the re-
lationship between the Dirac cone dispersion and the
ZRI. We also study the flat band effect of the Dirac-
like cone on realizing the ZIM. All the findings show
that, to mimic ZIMs, the PCs must satisfy the follow-
ing conditions: Firstly, there exist only conical dis-
persion relations near the Dirac point. Secondly, the
Dirac point must be located at the center of the first
Brillouin zone. Thirdly, the PC can be regarded as a
homogenous material for light waves propagating in-
side it.
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