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Text A: Theoretical Model 

  As shown in Figure S1, we consider a topological insulator (TI) covered by a superconductor. 

Superconductivity is induced in the TI via the proximity effect, and a vortex state is formed in the 

surface of the TI under a magnetic field. At the center of the vortex core(r = 0), the spin polarization of 

the MZM is parallel to the magnetic field.  

Let us construct the Hamiltonian of the vortex state in a topological superconductor (TS). This TS 

is modeled by a helical surface state with Rashba spin--orbit coupling and proximity-induced 

superconductivity [S1]. The helical surface state is the surface state of a 3D topological insulator 

in the x--y plane. We can generalize the Hamiltonian in the x--y plane to a spherical surface of 

radius R. 



The single-electron Hamiltonian of a helical surface state is [S1]: 

𝐻0𝑒 = −
𝛼

𝑅ℏ
𝐿̂ × 𝜎̂ − 𝜇,                                                              (s1)  

where 𝛼  is the spin-orbit coupling strength, 𝜎̂  is the Pauli matrices, 𝐿̂  are the orbital angular 

momentum, and 𝜇  is the chemical potential. The single-hole Hamiltonian (𝐻0ℎ ) defined as -

𝜎𝑦𝐻0𝑒σ𝑦
∗  and 𝜎𝑦 is a pauli matrix.  

The Hamiltonian of the proximity-induced superconducting state can be described as: 

𝐻∆ = ∆(𝑐↓𝑐↑ − 𝑐↑𝑐↓) + ∆∗(𝑐↓
+𝑐↑

+ − 𝑐↑
+𝑐↓

+),                                      (s2) 

where ∆  is the proximity induced superconducting order parameter ans 𝑐𝜎
(+)

 is the electron 

annihilation (creation) operator with 𝜎 =↑↓ denoting the spin. 

Then, in the standard Nambu representation, the field operator can be defined as 

𝜓̂(𝑟) = [𝑐̂↑, 𝑐̂↓, 𝑐̂↓
+, −𝑐̂↑

+]𝑇.                                                    (s3) 

The Hamiltonian of the proximity-induced superconducting state in then 

𝐻∆ = [
0 ∆𝐼
∆∗𝐼 0

],                                                         (s4) 

where I is the unit matrix. 

     The Hamiltonian of the vortex state can be written as: 

𝐻𝜈 = [
𝐻0𝑒 Δ𝐼
Δ∗ 𝐻0ℎ

],                                                       (s5) 

where 𝐻0ℎ is the single-hole Hamiltonian of a helical surface state defined as -𝜎𝑦𝐻0𝑒σ𝑦
∗  and 𝜎𝑦 is 

a pauli matrix. 

The vortex state can be described as ∆= ∆(𝜃)𝑒𝑖𝜙. Here the factor 𝑒𝑖𝜙 describes a vortex with a 

winding number of 1 and ∆(𝜃) = ∆0𝑡𝑎𝑛ℎ⁡(
𝑅𝑠𝑖𝑛𝜃

𝜉0
), where 𝜉0 characterizes the size of the vortex 

core. 

By diagonalzing𝐻𝜈, we can define a new quantum number of 𝐾𝑧 [S1], where𝐾𝑧|Φ𝑚 >= 𝑚|Φ𝑚 >, 

where m and |𝛷𝑚 > are the eigenvalue and eigenfunction of 𝐾𝑧. Here  𝐾𝑧 = 𝑙𝑧 + 𝜎𝑧 + 𝜏𝑧⁡ is the 

orbital quantum number in the z direction,⁡𝜎𝑧 is the spin quantum number in the z direction, 𝜏𝑧⁡ is 



the spin-orbit-pseudospin quantum number referring to the particle-hole degree of freedom and 

|𝛷𝑚 > is the four-component wave function [S1]. 

|𝛷𝑚 >= [𝑒𝑖𝑚𝜙𝑢1, 𝑒
𝑖(𝑚+1)𝜙𝑢2, 𝑒

𝑖(𝑚−1)𝜙𝑣1, 𝑒
𝑖𝑚𝜙𝑣2]                  (s6) 

The eigenvalue problem then becomes 

𝐻𝑣|Φ𝑚 >= 𝐸𝑚|Φ𝑚 >.                                                        (s7) 

The four-component eigenfunction basis [S1-S2] in |Φ𝑚 >  can be expressed in terms of the 

spherical harmonic functions: 𝑒𝑖𝑚𝜙𝑢1 = ∑ 𝑎𝑙𝑙 𝑌𝑙
𝑚 , 𝑒𝑖(𝑚+1)𝜙𝑢2 = ∑ 𝑏𝑙𝑙 𝑌𝑙

𝑚+1 , 𝑒𝑖(𝑚−1)𝜙𝑣1 =

∑ 𝑐𝑙𝑙 𝑌𝑙
𝑚−1 , 𝑒𝑖𝑚𝜙𝑣2 = ∑ 𝑑𝑙𝑙 𝑌𝑙

𝑚 , where 𝑌𝑙
𝑚(𝜃, 𝜙) = 𝑃𝑙

𝑚(𝑐𝑜𝑠𝜃)𝑒𝑖𝑚𝜙/√2𝜙  and 

𝑃𝑙
𝑚(𝑐𝑜𝑠𝜃)⁡is⁡the⁡associated⁡Legendre⁡polynomial. 

     By directly diagonalizing the 𝐻𝑣, we can obtain the wave function and the energy spectrum. In 

our numerical calculations, we set R=50𝜉0, α=30 meV∙nm, 𝜉0=35 nm, ∆0=1 meV, and⁡𝜇 =90 meV, 

which are comparable to the experiment data in Bi2Se3[S3]. Taking a cutoff in the orbital angular 

momentum 𝑙 to be approximately 200, we find that for m = zero, 𝐸0 = zero (numerically ±4 ×

10−6 meV). Here 𝑢1=𝑣2 ≠0, and 𝑢2=𝑣1 = 0; this means that a spin up electron and a spin up hole 

occupy the MZM. For the m=1 state, 𝐸−1=-0.06 meV, 𝑣1 ≠0, 𝑢2=0, u1=0 and 𝑣2=0; only a hole 

with a down spin can occupy this state. Meanwhile, for m=-1, 𝐸1=0.06$ meV,⁡𝑢2 ≠ 0, 𝑢1, 𝑣1 and 

𝑣2=0, only a spin down electron can occupy this state. These are the first excited states of the 

vortex. When |m|>1,⁡𝑣1, 𝑢2, 𝑢1,and 𝑣2 are equal to zero at the core of the vortex. 

    Next, let us consider the total Hamiltonian of a system with a vortex state coupling to a spin 

polarization STM tip. The Hamiltonian of the electron on the STM tip can be described as[S4]: 

𝐻𝐿,𝑒 = ∑ 𝑑̂𝐿,𝜎
+

𝜎 (𝜀𝜎 − 𝜇𝐿 + 𝜎𝑀)𝑑̂𝐿,𝜎                                (s8) 

where 𝑑̂𝐿,𝜎
+  denotes the electron annihilation (creation) operator of the STM tip with 𝜎 spin, 𝜇𝐿 

indicates the chemical potential of the STM tip (set to zero), 𝜀𝜎 is the kinetic energy of the STM 

tip with 𝜎 spin, 𝑀̂ is the spin related potential and 𝜎̂ are Pauli matrices. 

The Hamiltonian of the STM tip is 

𝐻𝐿 = [
𝐻𝐿,𝑒 0

0 𝐻𝐿,ℎ
],                                               (s9) 

where (𝐻𝐿,ℎ) defined as -𝜎𝑦𝐻𝐿,𝑒σ𝑦
∗   is the Hamiltonian of the electron(hole) on the STM tip. 



The coupling between the vortex states and the STM tip can be described using the following 

Hamiltonian [S4]: 

𝐻𝐿−𝑣 = ∑ {2𝑡𝑛𝜎(𝑐𝑜𝑠
𝜃

2
𝑑̂𝐿,𝜎
+ − 𝜎 ∙ 𝑠𝑖𝑛

𝜃

2
𝑑̂𝐿,𝜎̅
+ )𝑐̂𝑛,𝜎 + 𝐻. 𝑐. }𝑛,𝜎 ,          (s10) 

where 𝑡𝑐 is the coupling strength between the vortex and the STM tip. 

The total Hamiltonian of the system is: 

𝐻𝑡𝑜𝑡 = [
𝐻𝐿 𝐻𝐿−𝑣

𝐻𝑣−𝐿 𝐻𝑣
].                                                     (s11) 

The retarded Green’s function of the system can be obtained via Dyson's equation: 

𝐺𝑡𝑜𝑡 =
1

(𝐺0,𝑅)−1−Σ𝑟
.                                                     (s12) 

Here, the single-particle retarded Green’s function 𝐺0,𝑅  can be constructed with the wave 

functions Ψ̂𝑚 and the eigenvalue E𝑚 of the vortex state: 

𝐺0,𝑅 = ∑
|Ψ̂𝑚><Ψ̂𝑚|

𝐸−𝐸𝑚+𝑖𝛿𝑚 ,                                                (s13) 

Where |𝛹̂𝑚 >= [𝑒𝑖𝑚𝜙𝑢1, 𝑒
𝑖(𝑚+1)𝜙𝑢2, 𝑒

𝑖𝑚𝜙𝑣2, 𝑒
𝑖(𝑚−1)𝜙𝑣1]  and 𝛿⁡𝑖𝑠 a positive infinitesimal. 

We assume that the spin polarization of the FM tip 𝑀̂ has an angle $\theta$ with respect to the z 

direction(the direction of the MZM spin polarization). 

The self-energy Σ𝑟 = 𝐻𝑣−𝐿𝜆
𝑟𝐻𝐿−𝑣  with 𝜆𝑟 = ∑

|𝜙𝑚
1 ><𝜙𝑚

1 |

𝐸−𝐸𝑚+𝑖𝛿𝑚  is the single-particle retarded 

Green’s function of the STM tip. 𝐸𝑚 is the eigenvalue of 𝐻𝐿 and |𝜙𝑚
1 > is the eigenfunction of 𝐻𝐿, 

𝛿⁡𝑖𝑠 a positive infinitesimal. 

Then, the general form of 𝜆𝑟 is: 

𝜆𝑟 = [

𝜆𝑒↑↑ 𝜆𝑒↑↓
𝜆𝑒↓↑ 𝜆𝑒↓↓

0 0
0 0

0 0
0 0

𝜆ℎ↑↑ 𝜆ℎ↑↓
𝜆ℎ↓↑ 𝜆ℎ↓↓

],                                           (s14) 

where 𝜆𝑒↑↑,nn = 𝑡𝑒𝑛,↑
2 𝑐𝑜𝑠2

𝜃

2
𝜆1 + 𝑡𝑒𝑛,↑

2 𝑠𝑖𝑛2
𝜃

2
𝜆2 , 𝜆𝑒↑↓,nn = 𝑡𝑒𝑛↑𝑡𝑒𝑛↓𝑐𝑜𝑠

𝜃

2
𝑠𝑖𝑛

𝜃

2
(𝜆1 − 𝜆2) , 𝜆𝑒↓↑,nn =

𝑡𝑒𝑛↑𝑡𝑒𝑛↓𝑐𝑜𝑠
𝜃

2
𝑠𝑖𝑛

𝜃

2
(𝜆1 − 𝜆2),  𝜆𝑒↓↓,nn = 𝑡𝑒𝑛,↓

2 𝑐𝑜𝑠2
𝜃

2
𝜆1 + 𝑡𝑒𝑛,↓

2 𝑠𝑖𝑛2
𝜃

2
𝜆2,⁡𝜆ℎ↑↑,nn = 𝑡ℎ𝑛,↑

2 𝑐𝑜𝑠2
𝜃

2
𝜆3 +



𝑡ℎ𝑛,↑
2 𝑠𝑖𝑛2

𝜃

2
𝜆4 , 𝜆ℎ↑↓,nn = 𝑡ℎ𝑛,↑𝑡ℎ𝑛,↓𝑐𝑜𝑠

𝜃

2
𝑠𝑖𝑛

𝜃

2
(𝜆3 − 𝜆4) , 𝜆ℎ↓↑,𝑛𝑛 = 𝑡ℎ𝑛,↑𝑡ℎ𝑛,↓𝑐𝑜𝑠

𝜃

2
𝑠𝑖𝑛

𝜃

2
(𝜆3 − 𝜆4) ,  

𝜆ℎ↓↓,nn = 𝑡ℎ𝑛,↓
2 𝑐𝑜𝑠2

𝜃

2
𝜆3 + 𝑡ℎ𝑛,↓

2 𝑠𝑖𝑛2
𝜃

2
𝜆4 , with 𝜆1 = (𝐸 − (𝑒0 +𝑀) + 𝑖𝛿)−1 , 𝜆2 = (𝐸 −

(𝑒0 −𝑀) + 𝑖𝛿)−1,⁡𝜆3 = (𝐸 + (𝑒0 +𝑀) + 𝑖𝛿)−1, 𝜆4 = (𝐸 + (𝑒0 −𝑀) + 𝑖𝛿)−1, n denote the state 

of vortex.Here, we use the parameter as: e=10∆, |M|=7∆,𝑡𝑒0,↑ = 𝑡ℎ0,↑ = 𝑡𝑒1(2),↓ = 𝑡ℎ−1(−2),↓ =

0.7∆,⁡𝑡𝑒1(2),↑ = 𝑡ℎ−1(−2),↑ = 𝑡𝑒0,↓ = 𝑡ℎ0,↓ = 0.2𝑡𝑒0,↑. 

The S matrix can be obtained via the Fisher-Lee formula [S5]: 

S = [
𝑟𝑒𝑒 𝑟𝑒ℎ
𝑟ℎ𝑒 𝑟ℎℎ

] = −𝐼 + 𝑖Γ
1

2 × 𝐺𝑡𝑜𝑡 × Γ
1

2,                                    (s15) 

where, Γ is the broadening function, which is defined as⁡𝛤 = 𝑖(𝛴𝑟 − 𝛴𝑟+), 𝑟𝑒𝑒(ℎℎ) is a 2× 2 matrix 

describing the probability of a electron(hole) being reflected as a electron(hole), while 𝑟𝑒ℎ(ℎ𝑒) is a 

2× 2 matrix describing the probability of a electron(hole) being reflected as a hole(electron) in 

spin space. The current 𝐼𝑐 can be defined as: 

𝐼𝑐 =
𝑒

ℎ
∫ [< 𝑎𝑒

+(𝐸)𝑎𝑒(𝐸) > −< 𝑏𝑒
+(𝐸)𝑏𝑒(𝐸) > −< 𝑎ℎ

+(𝐸)𝑎ℎ(𝐸) > +< 𝑏ℎ
+(𝐸)𝑏ℎ(𝐸) >]𝑑𝐸,

∞

0

 

(s16) 

where 𝑎𝑒(ℎ)
+(−)(𝐸) is the generate (annihilation) operator of an incoming electron(hole),  𝑏𝑒(ℎ)

+(−)(𝐸)is 

the generate (annihilation) operator of a outgoing electron(hole). The differential conductance can 

also be obtained [S6]. 

The shot noise includes additional information concerning the fluctuation and can be calculated as 

[S7] 

𝑆𝑝(𝑡 − 𝑡′) =
1

2
< ∆𝐼𝐿(𝑡)∆𝐼𝐿(𝑡

′) + ∆𝐼𝐿(𝑡′)∆𝐼𝐿(𝑡) >                          (s17) 

Where ∆𝐼𝐿(𝑡) = 𝐼𝐿(𝑡) − 𝐼𝐿0 and 𝐼𝐿0 is the average of 𝐼𝐿(𝑡)⁡ 

The shot noise under the zero temperature limit can be obtained as follows 

When eV>0, 

 



⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑆𝑝1 =
2𝑒3𝑉

ℎ
[(𝑟ℎ𝑒

+ 𝑎𝑒
+(𝐸)𝑟ℎ𝑒𝑎𝑒(𝐸))(𝑟ℎℎ

+ 𝑎ℎ
+(𝐸)𝑟ℎℎ𝑎ℎ(𝐸)) +

⁡⁡⁡⁡⁡(𝑟𝑒𝑒
+𝑎𝑒

+(𝐸)𝑟𝑒𝑒𝑎𝑒(𝐸))(𝑟𝑒ℎ
+ 𝑎ℎ

+(𝐸)𝑟𝑒ℎ𝑎ℎ(𝐸)) − (𝑟𝑒𝑒
+𝑎𝑒

+(𝐸)𝑟ℎ𝑒𝑎𝑒(𝐸))(𝑟ℎℎ
+ 𝑎ℎ

+(𝐸)𝑟𝑒ℎ𝑎ℎ(𝐸)) −

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(𝑟ℎ𝑒
+ 𝑎𝑒

+(𝐸)𝑟𝑒𝑒𝑎𝑒(𝐸))(𝑟𝑒ℎ
+ 𝑎ℎ

+(𝐸)𝑟ℎℎ𝑎ℎ(𝐸))]                            (s18) 

When eV<0, 𝑎𝑒
(+)

 should change to 𝑎ℎ
(+)

 and  𝑟𝑒(ℎ)𝑒(ℎ)
(+)

 should change to 𝑟ℎ(𝑒)ℎ(𝑒)
(+)

. This is because 

the carrier of the charge current is the change from electron to hole. When eV=0, the shot noise 

power should be 
(𝑆𝑝1(𝑒𝑉>0)+𝑆𝑝1(𝑒𝑣<0))

2
.In other words, the shot noise power is 0 at zero 

temperature. 

The shot noise power [6] can be simplified as Sp: 

𝑆𝑝 =
8𝑒3𝑉

ℎ
𝑟𝑒ℎ
+ 𝑟𝑒ℎ𝑟𝑒𝑒

+𝑟𝑒𝑒.                                                   (s19) 

The Fano factor [6] is defined as 

𝐹 =
𝑆𝑝

2𝑒𝐼
.                                                           (s20) 

Both the shot noise power and the Fano factor can be obtained from the S-matrix. 

Text B: Charge transport properties of SSAR when STM tip contact with the vortex core 

 



Fig. S1. The angular dependence of the conductance in the SSAR effect when STM tip 

contact with the vortex core. The conductance forms a peak with a maximum value of two 

and the width decreases with the increase of the angle, which is consistent with the previous 

studies [S8].  

Text C: Influence of the first and second excited states on conductance 

The different properties between the two conditions can be explained using the Green's function of 

system. From the wave function of the vortex states, we find that only the first term (𝑢1 for the 

spin-up electron, 𝑒↑ and the third term (𝑣2 for the spin-up hole, ℎ↑) of the wave function(|𝛹0 > ) 

have non-zero values at the central of vortex when m = 0. When m = 1, only the fourth term (for 

the spin-down hole, h↓) of the wave function (|𝛹−1 > ) has a non-zero value, while for m = -1, 

only the second term (for the spin-down electron, e↓) of the wave function  (|𝛹1 > )  has a non-

zero value central of vortex.  This means that the MZM is only local at the spin up channel of 

the hole and the electron, while the two first excited states are local at the spin-down 

channels of the electron and the hole, respectively. In the collinear case, the self-energy is a 

diagonal matrix and there is no coupling between the two spin channels. Only the coupling 

between the electron and the hole is local at the spin-up channel of the MZM. 

 However, in case of STM tip is contact with non-central area, the wave function of MZM have 

a little spin ↓ component. While the excited states have both of electron and hole component. 

For example, the m=1 state，expect the spin-down hole, h↓ , there are little component of spin 

up electron and spin up hole. Therefore, the excited states can contribute to the conductance 

in the non-central case.  In this case, the excited states have two influence on the 

conductance, the first is more peaks at the energy of the excited states, second is decrease 

the conductance near the zero energy. 

 Here, we use the 𝑡𝑒(ℎ),𝑛,↑(↓) to describe the coupling between the STM tip and vortex states. 

We set 𝑡𝑒0,↑ = 𝑡ℎ0,↑ = 𝑡𝑒1(2),↓ = 𝑡ℎ−1(−2),↓ = 0.7∆ , ⁡𝑡𝑒1(2),↑ = 𝑡ℎ−1(−2),↑ = 𝑡𝑒0,↓ = 𝑡ℎ0,↓ = 𝑛𝑡𝑒0,↑ . 

We find that when n=0, the STM tip only coupling with the spin up channel of MZM and the spin 

down channel of the excited states. In this case, the coupling between electron and hole is only 

from the MZM. In case of n ≠0, the STM tip have coupling with the spin up channel of the 

excited states. 

Then, the influence of excited states on the conductance will increase with increase of n.  



Besides, with increase of the 𝜃, the coupling between the spin up channel and spin down channel 

is strong. The spin down channel that is majority component of wave function may have more 

contribution of conductance. However, when 𝜃 = 180𝑜, the energy broadening is too small to 

suppress the contribution of excited states. 
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