[1] | Friedli S and Velenik Y 2017 Statistical Mechanics of Lattice Systems: A Concrete Mathematical Introduction (Cambridge: Cambridge University Press) |
[2] | Ising E 1925 Z. Phys. 31 253 | Beitrag zur Theorie des Ferromagnetismus
[3] | Onsager L 1944 Phys. Rev. 65 117 | Crystal Statistics. I. A Two-Dimensional Model with an Order-Disorder Transition
[4] | Onsager first announced the result in a conference in 1942, while the official paper was not published until 1944 |
[5] | Yang C N 1952 Phys. Rev. 85 808 | The Spontaneous Magnetization of a Two-Dimensional Ising Model
[6] | Wilson K G 1971 Phys. Rev. B 4 3174 | Renormalization Group and Critical Phenomena. I. Renormalization Group and the Kadanoff Scaling Picture
[7] | Wilson K G 1971 Phys. Rev. B 4 3184 | Renormalization Group and Critical Phenomena. II. Phase-Space Cell Analysis of Critical Behavior
[8] | Wilson K G and Fisher M E 1972 Phys. Rev. Lett. 28 240 | Critical Exponents in 3.99 Dimensions
[9] | Wilson K G 1975 Rev. Mod. Phys. 47 773 | The renormalization group: Critical phenomena and the Kondo problem
[10] | Deng Y and Blöte H W J 2003 Phys. Rev. E 68 036125 | Simultaneous analysis of several models in the three-dimensional Ising universality class
[11] | Ferrenberg A M, Xu J and Landau D P 2018 Phys. Rev. E 97 043301 | Pushing the limits of Monte Carlo simulations for the three-dimensional Ising model
[12] | Hou P, Fang S, Wang J, Hu H and Deng Y 2019 Phys. Rev. E 99 042150 | Geometric properties of the Fortuin-Kasteleyn representation of the Ising model
[13] | Kos F, Poland D, Simmons-Duffin D and Vichi A 2016 J. High Energy Phys. 2016(08) 36 | Precision islands in the Ising and O(N ) models
[14] | Poland D, Rychkov S and Vichi A 2019 Rev. Mod. Phys. 91 015002 | The conformal bootstrap: Theory, numerical techniques, and applications
[15] | Broadbent S R and Hammersley J M 1957 Mathematical Proceedings of the Cambridge Philosophical Society (Cambridge: Cambridge University Press) pp 629–641 | Percolation processes
[16] | Stauffer D and Aharony A 2018 Introduction to Percolation Theory (New York: CRC Press) |
[17] | Chayes J and Chayes L 1987 Commun. Math. Phys. 113 27 | On the upper critical dimension of Bernoulli percolation
[18] | Aizenman M and Newman C M 1984 J. Stat. Phys. 36 107 | Tree graph inequalities and critical behavior in percolation models
[19] | Hara T and Slade G 1990 Commun. Math. Phys. 128 333 | Mean-field critical behaviour for percolation in high dimensions
[20] | Herega A 2015 J. Mater. Sci. Eng. A 5 409 | Some Applications of the Percolation Theory: Review of the Century Beginning
[21] | Hopfield J J 1982 Proc. Natl. Acad. Sci. USA 79 2554 | Neural networks and physical systems with emergent collective computational abilities.
[22] | Buldyrev S V, Parshani R, Paul G, Eugene S H and Havlin S 2010 Nature 464 1025 | Catastrophic cascade of failures in interdependent networks
[23] | Mello I F, Squillante L, Gomes G O, Seridonio A C and de Souza M 2021 Physica A 573 125963 | Epidemics, the Ising-model and percolation theory: A comprehensive review focused on Covid-19
[24] | Zeng G, Gao J, Shekhtman L, Guo S, Lv W, Wu J, Liu H, Levy O, Li D, Gao Z, Stanley H E and Havlin S 2020 Proc. Natl. Acad. Sci. USA 117 17528 | Multiple metastable network states in urban traffic
[25] | Ma Y P, Sudakov I, Strong C and Golden K M 2019 New J. Phys. 21 063029 | Ising model for melt ponds on Arctic sea ice
[26] | Brunk N E and Twarock R 2021 ACS Nano 15 12988 | Percolation Theory Reveals Biophysical Properties of Virus-like Particles
[27] | Zhang L, Zeng G, Li D, Huang H J, Stanley H E and Havlin S 2019 Proc. Natl. Acad. Sci. USA 116 8673 | Scale-free resilience of real traffic jams
[28] | Grimmett G R 2006 The Random-Cluster Model (Berlin: Springer) |
[29] | Wu F Y 1982 Rev. Mod. Phys. 54 235 | The Potts model
[30] | Swendsen R H and Wang J S 1987 Phys. Rev. Lett. 58 86 | Nonuniversal critical dynamics in Monte Carlo simulations
[31] | Wolff U 1989 Phys. Rev. Lett. 62 361 | Collective Monte Carlo Updating for Spin Systems
[32] | Chayes L and Machta J 1998 Physica A 254 477 | Graphical representations and cluster algorithms II
[33] | Zhang L, Michel M, Elçi E M and Deng Y 2020 Phys. Rev. Lett. 125 200603 | Loop-Cluster Coupling and Algorithm for Classical Statistical Models
[34] | A complete graph with $V$ vertices is a graph in which each vertex is connected to all others. |
[35] | Chayes L, Coniglio A, Machta J and Shtengel K 1999 J. Stat. Phys. 94 53 |
[36] | Luczak M and Łuczak T 2006 Random Struct. & Algorithms 28 215 | The phase transition in the cluster-scaled model of a random graph
[37] | Fang S, Zhou Z and Deng Y 2021 Phys. Rev. E 103 012102 | Percolation effects in the Fortuin-Kasteleyn Ising model on the complete graph
[38] | Fang S, Grimm J, Zhou Z and Deng Y 2020 Phys. Rev. E 102 022125 | Complete graph and Gaussian fixed-point asymptotics in the five-dimensional Fortuin-Kasteleyn Ising model with periodic boundaries
[39] | Lv J P, Xu W, Sun Y, Chen K and Deng Y 2020 Natl. Sci. Rev. 8 nwaa212 | Finite-size scaling of O( n ) systems at the upper critical dimensionality
[40] | Lundow P H and Markström K 2015 Nucl. Phys. B 895 305 | The discontinuity of the specific heat for the 5D Ising model
[41] | Mertens S and Moore C 2018 Phys. Rev. E 98 022120 | Percolation thresholds and Fisher exponents in hypercubic lattices
[42] | Wittmann M and Young A P 2014 Phys. Rev. E 90 062137 | Finite-size scaling above the upper critical dimension
[43] | Flores-Sola E, Berche B, Kenna R and Weigel M 2016 Phys. Rev. Lett. 116 115701 | Role of Fourier Modes in Finite-Size Scaling above the Upper Critical Dimension
[44] | Grimm J, Elçi E M, Zhou Z, Garoni T M and Deng Y 2017 Phys. Rev. Lett. 118 115701 | Geometric Explanation of Anomalous Finite-Size Scaling in High Dimensions
[45] | Zhou Z, Grimm J, Fang S, Deng Y and Garoni T M 2018 Phys. Rev. Lett. 121 185701 | Random-Length Random Walks and Finite-Size Scaling in High Dimensions
[46] | Fang S, Deng Y and Zhou Z 2021 Phys. Rev. E 104 064108 | Logarithmic finite-size scaling of the self-avoiding walk at four dimensions
[47] | Papathanakos V 2006 Ph.D. Dissertation (Princeton University) |
[48] | Grimm J, Elçi E M, Zhou Z, Garoni T M and Deng Y 2017 Phys. Rev. Lett. 118 115701 | Geometric Explanation of Anomalous Finite-Size Scaling in High Dimensions
[49] | Zhou Z, Grimm J, Fang S, Deng Y and Garoni T M 2018 Phys. Rev. Lett. 121 185701 | Random-Length Random Walks and Finite-Size Scaling in High Dimensions
[50] | Bollobás B, Grimmett G and Janson S 1996 Probab. Theory Relat. Fields 104 283 | The random-cluster model on the complete graph
[51] | Kenna R 2013 Order, Disorder and Criticality: Advanced Problems of Phase Transition Theory Volume 3 (Singapore: World Scientific) p 1 |
[52] | Kenna R 2004 Nucl. Phys. B 691 292 | Finite size scaling for O(N) φ4-theory at the upper critical dimension
[53] | Aharony A, Gefen Y and Kapitulnik A 1984 J. Phys. A 17 L197 | Scaling at the percolation threshold above six dimensions
[54] | Nahum A, Chalker J, Serna P, Ortuno M and Somoza A 2013 Phys. Rev. B 88 134411 | Phase transitions in three-dimensional loop models and the sigma model